TA的每日心情 | 开心 2024-9-19 21:14 |
---|
签到天数: 757 天 [LV.10]以坛为家III
管理员
- 积分
- 1312455
|
资源详情
课程介绍:
2t-\5[6@/E,P2f%H*_
都是一些关于大数据深度学习的视频教程,国外教授录制,带英文字幕.&L6\7g8K:w*`)P,D
0c2T%t$~7s-h7e%e1x%~
详细目录:
├─00_NeuralNetworksforMachineLearning
│ └─00_NeuralNetworksforMachineLearning
│ ├─hinton-ml*U+J9y-X-t e(u
│ │ 1.Whydoweneedmachinelearning*@8| ~*M'j']3P'A
│ │ 1.Whydoweneedmachinelearning.mp4
│ │ 10.Whatperceptronscan'tdo[15min].mp4
│ │ 10.Whatperceptronscan'tdo[15min].srt
│ │ 11.Learningtheweightsofalinearneuron[12min].mp4"p v0A#c&r(}-w$\
│ │ 11.Learningtheweightsofalinearneuron[12min].srt3V%K8W6A6{![.R5I9h6v)R
│ │ 12.Theerrorsurfaceforalinearneuron[5min].mp43W7G/L2A6C:A-K2N7}
│ │ 12.Theerrorsurfaceforalinearneuron[5min].srt
│ │ 13.Learningtheweightsofalogisticoutputneuron[4min].mp4!F)a)k(u/m4x
│ │ 13.Learningtheweightsofalogisticoutputneuron[4min].srt
│ │ 14.Thebackpropagationalgorithm[12min].mp4
│ │ 14.Thebackpropagationalgorithm[12min].srt8i!V%y(v!?)k0Z5@4I)?
│ │ 15.Usingthederivativescomputedbybackpropagation[10min].mp4,p-X6N'm;a%}!W"\*B
│ │ 15.Usingthederivativescomputedbybackpropagation[10min].srt3].x:R;e8^)j
│ │ 16.Learningtopredictthenextword[13min].mp4 L8G%_+Z(m-w5I"`
│ │ 16.Learningtopredictthenextword[13min].srt$x"D%O0p!c+?;Q ~-W-^"C
│ │ 17.Abriefdiversionintocognitivescience[4min].mp4
│ │ 17.Abriefdiversionintocognitivescience[4min].srt
│ │ 19.Neuro-probabilisticlanguagemodels[8min].mp48d(^.a%e*T#f*O
│ │ 19.Neuro-probabilisticlanguagemodels[8min].srt/m(_*@*Z)}
│ │ 2.Whatareneuralnetworks1R0n6];a4O/c!C
│ │ 2.Whatareneuralnetworks.mp4
│ │ 20.Waystodealwiththelargenumberofpossibleoutputs[15min].mp45`'Y6l*L(u3u
│ │ 20.Waystodealwiththelargenumberofpossibleoutputs[15min].srt!q9X!l*N(x
│ │ 21.Whyobjectrecognitionisdifficult[5min].mp48B6s;j7i4G-Z8O;B
│ │ 21.Whyobjectrecognitionisdifficult[5min].srt
│ │ 22.Achievingviewpointinvariance[6min].mp4
│ │ 22.Achievingviewpointinvariance[6min].srt3n4k+h&C.f.O
│ │ 23.Convolutionalnetsfordigitrecognition[16min].mp4'n"G$A2o4Q3H0N
│ │ 23.Convolutionalnetsfordigitrecognition[16min].srt#k,U3F"H*Q6V7l9?8o6B
│ │ 24.Convolutionalnetsforobjectrecognition[17min].mp44X#`#Y#S)i.Q:q*h
│ │ 24.Convolutionalnetsforobjectrecognition[17min].srt7i({,v-z6w'b"z)]4d&u
│ │ 25.Overviewofmini-batchgradientdescent.mp4/w!O1I4r5G;l)S"c,w*M1S
│ │ 25.Overviewofmini-batchgradientdescent.srt
│ │ 26.Abagoftricksformini-batchgradientdescent.mp4
│ │ 26.Abagoftricksformini-batchgradientdescent.srt6T/i(s1w'}%J:I
│ │ 27.Themomentummethod.mp4:s+Y"x8z!?1l,v
│ │ 27.Themomentummethod.srt:I4~!P4x2p-t5n
│ │ 28.Adaptivelearningratesforeachconnection.mp4
│ │ 28.Adaptivelearningratesforeachconnection.srt
│ │ 3.Somesimplemodelsofneurons[8min].mp47P7R&x3s,]7e
│ │ 3.Somesimplemodelsofneurons[8min].srt,D4t;\2u5v;}:c4T
│ │ 31.TrainingRNNswithbackpropagation.mp4)|$Q+g$m$R5S
│ │ 31.TrainingRNNswithbackpropagation.srt0@2z-h$y)[/R4a
│ │ 32.AtoyexampleoftraininganRNN.mp4$k-R!e)N&D+d1]*M$v"m.?
│ │ 32.AtoyexampleoftraininganRNN.srt
│ │ 33.WhyitisdifficulttotrainanRNN.mp43R)\0n$l)t0|)k5S&m
│ │ 33.WhyitisdifficulttotrainanRNN.srt
│ │ 34.Long-termShort-term-memory.mp4
│ │ 34.Long-termShort-term-memory.srt
│ │ 35.AbriefoverviewofHessianFreeoptimization.mp4
│ │ 35.AbriefoverviewofHessianFreeoptimization.srt
│ │ 37.LearningtopredictthenextcharacterusingHF[12 mins].mp4
│ │ 37.LearningtopredictthenextcharacterusingHF[12 mins].srt
│ │ 38.EchoStateNetworks[9min].mp43B7R*~:\3V4Q
│ │ 38.EchoStateNetworks[9min].srt7?(f7v"Z/z o#i'e(E(b
│ │ 39.Overviewofwaystoimprovegeneralization[12min].mp4
│ │ 39.Overviewofwaystoimprovegeneralization[12min].srt
│ │ 4.Asimpleexampleoflearning[6min].mp4
│ │ 4.Asimpleexampleoflearning[6min].srt:V-V3x9A6Z.^
│ │ 40.Limitingthesizeoftheweights[6min].mp4
│ │ 40.Limitingthesizeoftheweights[6min].srt
│ │ 41.Usingnoiseasaregularizer[7min].mp4%X8?*F)p v$f
│ │ 41.Usingnoiseasaregularizer[7min].srt"n/\3A-f&P7O
│ │ 42.IntroductiontothefullBayesianapproach[12min].mp4
│ │ 42.IntroductiontothefullBayesianapproach[12min].srt
│ │ 43.TheBayesianinterpretationofweightdecay[11min].mp4#\9@5d2K2s8l2z)E!d
│ │ 43.TheBayesianinterpretationofweightdecay[11min].srt
│ │ 44.MacKay'squickanddirtymethodofsettingweightcosts[4min].mp4
│ │ 44.MacKay'squickanddirtymethodofsettingweightcosts[4min].srt
│ │ 45.Whyithelpstocombinemodels[13min].mp4
│ │ 45.Whyithelpstocombinemodels[13min].srt:m5U p5_!k"K
│ │ 46.MixturesofExperts[13min].mp4
│ │ 46.MixturesofExperts[13min].srt
│ │ 47.TheideaoffullBayesianlearning[7min].mp48@1l X,E"E"c"\
│ │ 47.TheideaoffullBayesianlearning[7min].srt
│ │ 48.MakingfullBayesianlearningpractical[7min].mp4
│ │ 48.MakingfullBayesianlearningpractical[7min].srt
│ │ 49.Dropout[9min].mp4&j4M!q(Q7k&H4})C
│ │ 49.Dropout[9min].srt&_)U-g8q,Q2W%R
│ │ 5.Threetypesoflearning[8min].mp4;n4R#R N2v:o
│ │ 5.Threetypesoflearning[8min].srt
│ │ 50.HopfieldNets[13min].mp4*W;t0H#K2h,t)X&o
│ │ 50.HopfieldNets[13min].srt
│ │ 51.Dealingwithspuriousminima[11min].mp4
│ │ 51.Dealingwithspuriousminima[11min].srt%R'['D4w0b"p!E
│ │ 52.Hopfieldnetswithhiddenunits[10min].mp47r&u%\-Z$Q
│ │ 52.Hopfieldnetswithhiddenunits[10min].srt9[7_3}.T!B9H0V:|5c)T,D#B
│ │ 53.Usingstochasticunitstoimprovsearch[11min].mp4
│ │ 53.Usingstochasticunitstoimprovsearch[11min].srt
│ │ 54.HowaBoltzmannmachinemodelsdata[12min].mp4:n5T7m-L:i!n4x&{,Z)s/x
│ │ 54.HowaBoltzmannmachinemodelsdata[12min].srt
│ │ 55.Boltzmannmachinelearning[12min].mp4)`+V/I!v7o:l.e
│ │ 55.Boltzmannmachinelearning[12min].srt
│ │ 57.RestrictedBoltzmannMachines[11min].mp4
│ │ 57.RestrictedBoltzmannMachines[11min].srt
│ │ 58.AnexampleofRBMlearning[7mins].mp49P8X)n4T){8w1O
│ │ 58.AnexampleofRBMlearning[7mins].srt!m w&t2p(G5f6J
│ │ 59.RBMsforcollaborativefiltering[8mins].mp4$C7S;|.q$V.d!@2j
│ │ 59.RBMsforcollaborativefiltering[8mins].srt.n0@3j'q:v-q2Y&~"X;E
│ │ 6.Typesofneuralnetworkarchitectures[7min].mp4
│ │ 6.Typesofneuralnetworkarchitectures[7min].srt
│ │ 60.Theupsanddownsofbackpropagation[10min].mp4
│ │ 60.Theupsanddownsofbackpropagation[10min].srt
│ │ 61.BeliefNets[13min].mp4.Z(R!t3K(r.j4Y%n-Q
│ │ 61.BeliefNets[13min].srt
│ │ 62.Learningsigmoidbeliefnets[12min].mp4
│ │ 62.Learningsigmoidbeliefnets[12min].srt"T'Y&F3r'A#R)_6f&n
│ │ 63.Thewake-sleepalgorithm[13min].mp4
│ │ 63.Thewake-sleepalgorithm[13min].srt
│ │ 64.LearninglayersoffeaturesbystackingRBMs[17min].mp4)N0L-U#H X
│ │ 64.LearninglayersoffeaturesbystackingRBMs[17min].srt0z5v0f7h7e-_
│ │ 65.DiscriminativelearningforDBNs[9mins].mp4
│ │ 65.DiscriminativelearningforDBNs[9mins].srt
│ │ 66(1).Whathappensduringdiscriminativefine-tuning-t.z9q&v'u+v*h8p
│ │ 66.Whathappensduringdiscriminativefine-tuning
│ │ 67.Modelingreal-valueddatawithanRBM[10mins].mp4"U.n"Q"H5W0]1Y
│ │ 67.Modelingreal-valueddatawithanRBM[10mins].srt
│ │ 69.FromPCAtoautoencoders[5mins].mp4;g,J.G+c/s*g
│ │ 69.FromPCAtoautoencoders[5mins].srt-t/h-M6d9R.@!t"D
│ │ 70.Deepautoencoders[4mins].mp4(\ V.H'|;c$y
│ │ 70.Deepautoencoders[4mins].srt$K-U/v&F&h'g8m)I1\3A
│ │ 71.Deepautoencodersfordocumentretrieval[8mins].mp48n:f5p)t5]+c7U.J3u
│ │ 71.Deepautoencodersfordocumentretrieval[8mins].srt!B7t4Y.X,M.W1};V
│ │ 72.SemanticHashing[9mins].mp4
│ │ 72.SemanticHashing[9mins].srt7M8`'J8q,F;i0J
│ │ 73.Learningbinarycodesforimageretrieval[9mins].mp4
│ │ 73.Learningbinarycodesforimageretrieval[9mins].srt2A5F+{!l"O6K
│ │ 74.Shallowautoencodersforpre-training[7mins].mp4-S6U8h;~)x*^:d
│ │ 74.Shallowautoencodersforpre-training[7mins].srt1M.?(K*{)[7O#j8x
│ │ 8.Ageometricalviewofperceptrons[6min].mp42~-O+n&K6Y/a1V
│ │ 8.Ageometricalviewofperceptrons[6min].srt%C9e#A:k%{,f!Z-~8D
│ │ 9.Whythelearningworks[5min].mp4
│ │ 9.Whythelearningworks[5min].srt.H-J.N0U/k1D6G2K
│ │ (k.|+K(K-w%^5V9T:k
│ └─neuralnets-2012-001
│ ├─01_Lecture16j!Q%]1P9d-W"c
│ │ 01_Why_do_we_need_machine_learning_13_min.mp4
|
|