联系客服1
联系客服2

斯坦福大学吴恩达Andrew Ng机器学习教程,全套视频教程学习资料通过百度云网盘下载

0
回复
276
查看
打印 上一主题 下一主题
[复制链接]
  • TA的每日心情
    开心
    2024-9-19 21:14
  • 签到天数: 757 天

    [LV.10]以坛为家III

    7335

    主题

    8751

    帖子

    131万

    积分

    管理员

    Rank: 9Rank: 9Rank: 9

    积分
    1313237
    楼主
    发表于 2021-4-15 04:25:06 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

    资源详情



    机器学习是一门让计算机在非精确编程下進行活动的科学。在过去十年,机器学习促成了无人驾驶车、高效语音识别、精确网络搜索及人类基因组认知的大力发展。机器学习如此无孔不入,你可能已经在不知情的情况下利用过无数次。许多研究者认为,这种手段是达到人类水平AI的最佳方式。这门课程中,你将学习到高效的机器学习技巧,及学会如何利用它为你服务。重点是,你不仅能学到理论基础,更能知晓如何快速有效应用这些技巧到新的问题上。最后,你会接触到硅谷创新中几个优秀的涉及机器学习与AI的应用实例。
    此课程将广泛介绍机器学习、数据挖掘与统计模式识别的知识。
    主题包括:
    (i)监督学习(参数/非参数算法、支持向量机、内核、神经网络)。
    (iii)机器学习的优秀案例(偏差/方差理论;机器学习和人工智能的创新过程)课程将拮取案例研究与应用,学习如何将学习算法应用到智能机器人(观感,控制)、文字理解(网页搜索,防垃圾邮件)、计算机视觉、医学信息学、音频、数据挖掘及其他领域上。


    【课程内容】
    1-1-Welcome(7min)
    1-2-WhatisMachineLearning-(7min)
    1-3-SupervisedLearning(12min)
    1-4-UnsupervisedLearning(14min)
    2-1-ModelRepresentation(8min)
    2-2-CostFunction(8min)
    2-3-CostFunction-IntuitionI(11min)
    2-4-CostFunction-IntuitionII(9min)
    2-5-GradientDescent(11min)
    2-6-GradientDescentIntuition(12min)
    2-7-GradientDescentForLinearRegression(10min)
    2-8-What-'sNext(6min)
    3-1-MatricesandVectors(9min)
    3-2-AdditionandScalarMultiplication(7min)
    3-3-MatrixVectorMultiplication(14min)
    3-4-MatrixMatrixMultiplication(11min)
    3-5-MatrixMultiplicationProperties(9min)
    3-6-InverseandTranspose(11min)
    4-1-MultipleFeatures(8min)
    4-2-GradientDescentforMultipleVariables(5min)
    4-3-GradientDescentinPracticeI-FeatureScaling(9min)
    4-4-GradientDescentinPracticeII-LearningRate(9min)
    4-5-FeaturesandPolynomialRegression(8min)
    4-6-NormalEquation(16min)
    4-7-NormalEquationNoninvertibility(Optional)(6min)
    5-1-BasicOperations(14min)
    5-2-MovingDataAround(16min)
    5-3-ComputingonData(13min)
    5-4-PlottingData(10min)
    5-5-ControlStatements-for,while,ifstatements(13min)
    5-6-Vectorization(14min)
    5-7-WorkingonandSubmittingProgrammingExercises(4min)
    6-1-Classification(8min)
    6-2-HypothesisRepresentation(7min)
    6-3-DecisionBoundary(15min)
    6-4-CostFunction(11min)
    6-5-SimplifiedCostFunctionandGradientDescent(10min)
    6-6-AdvancedOptimization(14min)
    6-7-MulticlassClassification-One-vs-all(6min)
    7-1-TheProblemofOverfitting(10min)
    7-2-CostFunction(10min)
    7-3-RegularizedLinearRegression(11min)
    7-4-RegularizedLogisticRegression(9min)
    8-1-Non-linearHypotheses(10min)
    8-2-NeuronsandtheBrain(8min)
    8-3-ModelRepresentationI(12min)
    8-4-ModelRepresentationII(12min)
    8-5-ExamplesandIntuitionsI(7min)
    8-6-ExamplesandIntuitionsII(10min)
    8-7-MulticlassClassification(4min)
    9-1-CostFunction(7min)
    9-2-BackpropagationAlgorithm(12min)
    9-3-BackpropagationIntuition(13min)
    9-4-ImplementationNote-UnrollingParameters(8min)
    9-5-GradientChecking(12min)
    9-6-RandomInitialization(7min)
    9-7-PuttingItTogether(14min)
    9-8-AutonomousDriving(7min)
    10-1-DecidingWhattoTryNext(6min)
    10-2-EvaluatingaHypothesis(8min)
    10-3-ModelSelectionandTrain-Validation-TestSets(12min)
    10-4-DiagnosingBiasvs.Variance(8min)
    10-5-RegularizationandBias-Variance(11min)
    10-6-LearningCurves(12min)
    10-7-DecidingWhattoDoNextRevisited(7min)
    11-1-PrioritizingWhattoWorkOn(10min)
    11-2-ErrorAnalysis(13min)
    11-3-ErrorMetricsforSkewedClasses(12min)
    11-4-TradingOffPrecisionandRecall(14min)
    11-5-DataForMachineLearning(11min)
    12-1-OptimizationObjective(15min)
    12-2-LargeMarginIntuition(11min)
    12-3-MathematicsBehindLargeMarginClassification(Optional)(20min)
    12-4-KernelsI(16min)
    12-5-KernelsII(16min)
    12-6-UsingAnSVM(21min)
    13-1-UnsupervisedLearning-Introduction(3min)
    13-2-K-MeansAlgorithm(13min)
    13-3-OptimizationObjective(7min)
    13-4-RandomInitialization(8min)
    13-5-ChoosingtheNumberofClusters(8min)
    14-1-MotivationI-DataCompression(10min)
    14-2-MotivationII-Visualization(6min)
    14-3-PrincipalComponentAnalysisProblemFormulation(9min)
    14-4-PrincipalComponentAnalysisAlgorithm(15min)
    14-5-ChoosingtheNumberofPrincipalComponents(11min)
    14-6-ReconstructionfromCompressedRepresentation(4min)
    14-7-AdviceforApplyingPCA(13min)
    15-1-ProblemMotivation(8min)
    15-2-GaussianDistribution(10min)
    15-3-Algorithm(12min)
    15-4-DevelopingandEvaluatinganAnomalyDetectionSystem(13min)
    15-5-AnomalyDetectionvs.SupervisedLearning(8min)
    15-6-ChoosingWhatFeaturestoUse(12min)<brstyle="overflow-wrap:break-word;color:rgb(111,116,121);font-family:-apple-system,"helvetica=""neue",=""helvetica,=""arial,="""pingfang=""sc",="""hiragino=""sans=""gb",=""stheiti,="""microsoft=""yahei",=""jhenghei",=""simsun,=""sans-serif;=""font-size:=""14px;"="">


    游客,如果您要查看本帖隐藏内容请回复
    收藏
    收藏0
    分享
    分享
    支持
    支持0
    反对
    反对0
    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 立即注册

    本版积分规则

    学习课程!一站搞定!
    学途无忧VIP会员群

    973849140

    周一至周日9:00-23:00

    反馈建议

    1227072433@qq.com 在线QQ咨询

    扫描二维码关注我们

    学途无忧!为学习谋坦途,为会员谋福利!|网站地图