TA的每日心情 | 开心 2024-9-19 21:14 |
---|
签到天数: 757 天 [LV.10]以坛为家III
管理员
- 积分
- 1312455
|
资源详情
课程简介:
有人统计过,在整个数据分析过程里,收集、整理数据的工作大致占全部工作量的90%,建模过程不足10%,可见ETL是数据处理流程中一个非常重要的环节。ETL工程师,在数据仓库类职位中占有很大比例,而且薪水都不差。IT人一下子转型数据分析师可能跳跃度比较大难度高,先转型数据仓库/ETL工程师再择机往更高处走是合理选择之一。在ETL软件中,使用最多的是开源的Kettle,完全免费,功能和忄生能不弱于datastage这类商业ETL软件,使用Kettle和其它开源数据平台软件,例如Mysql集群,Hadoop集群等组合在一起,是忄生价比极高的架构选择。本课程系统讲解Kettle及其秘密。
课程介绍:
ETL(Extract,Transformation,Load)工具是构建数据仓库、进行数据整合工作所必须使用的工具。目前市面有多种商业ETL工具,如Informatica,Datastage等。目前市场上开源且实用的ETL工具比较少,Kettle就是这不多的开源ETL工具之一。本课程将主要讲解开源ETL工具Kettle的基本使用和二次开发方法,并结合实际项目案例,讲解Kettle如何在实际中应用,以及应用中可能会出现的问题。针对目前大数据的应用情况,本课程也将结合大数据,讲述Kettle如何支持Hadoop、HBase、MongoDB、MapReduce等大数据技术。除了Kettle的使用,在本课程的后几个课时,将讲述Kettle的二次开发:包括Kettle代码阅读指导,KettleAPI的说明以及使用方法,Kettle插件的开发方法。
课程内容:
第一周:ETL的概念,Kettle的概念、功能、操作
第二周:Kettle资源库、日志、运行方式
第三周:输入步骤(表输入、文本文件输入、XML文件输入...)
第四周:输出步骤(表输出、更新、删除、文本文件输出、XML文件输出...)
第五周:转换步骤(过滤、字符串处理、拆分字段、计算器...)
第六周:转换步骤(字段选择、排序、增加校验列、去除重复记录...)
第七周:应用步骤、流程步骤(处理文件、执行程序、发送邮件、空操作、阻塞步骤、中止等...)
第八周:查询步骤、连接步骤(数据库查询、流查询、合并记录、记录集连接、笛卡尔...)
第九周:脚本步骤(Ja.vAscript,JA危aClass、正则表达式...)
第十周:作业项(拷贝、移动、ftp、sftp…)
第十一周:Kettle的参数和变量、Kettle集群
第十二周:Kettle代码编译、代码结构、应用集成、各种配置文件
第十三周:插件开发-步骤、作业项
第十四周:作业设计技巧、错误处理、调试转换、循环和分支
第十五周:大数据插件(Hadoop文件输入/输出,HBase输入/输出,MapReduce输入/输出,MongoDB输入/输出)
目标人群:
1.ETL工程师,JA危a开发工程师,
2.经常要做数据处理的DBA
3.有一定数据库基础和JA危a基础的学生。
课程预期目标:
1.理解Kettle软件的基本功能。
2.能使用Kettle完成基本的数据处理工作。
3.了解Kettle软件的一些高级功能
4.对有JA危a开发经验的同学,对Kettle代码结构有一定了解,能开发一些JA危a的基本插件
|
|