TA的每日心情 | 开心 2024-9-19 21:14 |
---|
签到天数: 757 天 [LV.10]以坛为家III
管理员
- 积分
- 1312455
|
资源详情
课程介绍:
2k7W:y2S$M
高级货,全英文,朋友从美国传过来的他们学校公开课内容,适合英文基础不错的同学来学习和理解.0Z&s#l(K,o3E)r
!k&_0\$B:u9X4^/b5b
详细目录:,g#R%e.z.O
$u e5e:r/d0e
+C:r+o-V h*z*k7|4t
├─01_data-science-context-and-concepts
│ ├─01_lesson-1-examples-and-the-diversity-of-data-science
│ ├─02_lesson-2-working-definitions-of-data-science
│ ├─03_lesson-3-characterizing-this-course
│ │ 01_tools-vs-abstractions.mp4
│ │ 01_tools-vs-abstractions.srt
│ │ 02_desktop-scale-vs-cloud-scale.mp4.Y(A7F'O;g e
│ │ 02_desktop-scale-vs-cloud-scale.srt
│ │ 03_hackers-vs-analysts.mp4
│ │ 03_hackers-vs-analysts.srt
│ │ 04_structs-vs-stats.mp4-k+n M+a+A5Q(@ H8o
│ │ 04_structs-vs-stats.srt&v%i0C-F |#U7X%A.^9_0D
│ │ 05_structs-vs-stats-cont-d.mp42{7F#@:g*l*z%x+V ~
│ │ 05_structs-vs-stats-cont-d.srt
│ │ (m2@5D"l+t/E,~%E
│ ├─04_lesson-4-related-topics [-t1H I:K4Y,D8s
│ │ 01_a-fourth-paradigm-of-science.mp47{+S,z:S'y&{!C-?0L'N4k!y
│ │ 01_a-fourth-paradigm-of-science.srt
│ │ 02_data-intensive-science-examples.mp4
│ │ 02_data-intensive-science-examples.srt-n%].L F+E)h2I
│ │ 03_big-data-and-the-3-vs.mp4
│ │ 03_big-data-and-the-3-vs.srt
│ │ 04_big-data-definitions.mp4%N"X+G&R)h1{
│ │ 04_big-data-definitions.srt6C6_1E"}$h3d6?&i
│ │ 05_big-data-sources.mp4
│ │ 05_big-data-sources.srt,O-o%F'{/e)R2~2V6E6n*s2o7]:E
│ │ -B-h+F;L$u,I'r${
│ ├─05_lesson-5-course-logistics3j2X(Y:i!a)f*J
│ │ 01_course-logistics.mp4;M.P4a4F,F;D,d
│ │ 01_course-logistics.srt4K#j8m"[4C&[
│ │ 5i-[*A:V0n
│ └─06_assignment-1-twitter-sentiment-analysis*|!t;D)|-P Y;K-}
├─02_relational-databases-and-the-relational-algebra
│ ├─01_lesson-6-principles-of-data-manipulation-and-management
│ ├─02_lesson-7-relational-algebra
│ ├─03_lesson-8-sql-for-data-science
│ │ 01_from-sql-to-ra.mp4
│ │ 01_from-sql-to-ra.srt%o0_)Y0O3w+o.X-s+z0O
│ │ 05_user-defined-functions.mp4+{ C7k5C)w:v-g)y.[0@
│ │ 05_user-defined-functions.srt
│ │
│ └─04_lesson-9-key-principles-of-relational-databases
├─03_mapreduce-and-parallel-dataflow-programming%I6\8W+[3X;y8k!y%o1J
│ ├─01_lesson-10-reasoning-about-scale7t;v0Y0{1l(S3h!q;p4n9f1B
│ │ 01_what-does-scalable-mean.mp4.T#T6y d0W)b
│ │ 01_what-does-scalable-mean.srt%v3?'`;d'\7s+t8L
│ │ /r8n&z%Q s6S
│ ├─02_lesson-11-the-mapreduce-programming-model
│ ├─03_lesson-12-algorithms-in-mapreduce
│ │ 08_mapreduce-phases.mp4&}/W)D0|8~.a/i"e$@
│ │ 08_mapreduce-phases.srt
│ │ ;X4q/|)y3c1r#S6[*D(m/k
│ └─04_lesson-13-parallel-databases-vs-mapreduce
├─04_nosql-systems-and-concepts
│ ├─01_lesson-14-what-problems-do-nosql-systems-aim-to-solve2A'Q'|!s6Q&c"l
│ │ 02_nosql-roundup.mp4't+m,X2u$T,j(n$i
│ │ 02_nosql-roundup.srt/X'Y#]7k3W6}6w M o#_
│ │ 05_eventual-consistency.mp4:]#[2S9r#a,m0l A+V8]5X
│ │ 05_eventual-consistency.srt
│ │ 06_cap-theorem.mp4
│ │ 06_cap-theorem.srt#E1h z)^*I
│ │ 2q3H7i7}4?4L!o
│ ├─02_lesson-15-early-key-value-systems-and-key-concepts
│ │ 01_types-of-nosql-systems.mp4
│ │ 01_types-of-nosql-systems.srt
│ │ 05_dynamodb-vector-clocks.mp4
│ │ 05_dynamodb-vector-clocks.srt'z8e'j2p%C
│ │ 06_vector-clocks-cont-d.mp4
│ │ 06_vector-clocks-cont-d.srt2g&v2|,^#T&B
│ │
│ ├─03_lesson-16-document-stores-and-extensible-record-stores
│ │ 01_couchdb-overview.mp4(v%z5t&O'a*C7[;e4K
│ │ 01_couchdb-overview.srt3z;E.{)n){8}-l8q/r.e
│ │ 02_couchb-views.mp4$p*k2Z2O%~;s;?6l/^9~
│ │ 02_couchb-views.srt"^7E2p&d;q*r#y#E
│ │ 03_bigtable-overview.mp4
│ │ 03_bigtable-overview.srt
│ │ 2q+@2{3G,J3T,Q6y!V4d:R
│ ├─04_lesson-17-extended-nosql-systems9p r8A(|/T1R
│ │ 01_hbase-megastore.mp4/o,b%[3S"i*[3o,@
│ │ 01_hbase-megastore.srt
│ │ 02_spanner.mp4
│ │ 02_spanner.srt
│ │ 03_spanner-cont-d-google-systems.mp4
│ │ 03_spanner-cont-d-google-systems.srt
│ │ 04_mapreduce-based-systems.mp4;N)U#S#h'N2i%q
│ │ 04_mapreduce-based-systems.srt8R3J)E&E1I9k
│ │ 05_bringing-back-joins.mp4
│ │ 05_bringing-back-joins.srt5t:o-w&x'W"I.D4q"@
│ │ 06_nosql-rebuttal.mp4:@3q)w:],q e)V(p#a$B4_
│ │ 06_nosql-rebuttal.srt
│ │ 8n M8@8v$Q+_!j8r%@!y
│ ├─05_lesson-18-pig-programming-with-relational-algebra
│ │ 01_almost-sql-pig.mp4
│ │ 01_almost-sql-pig.srt(^2b6w1t3k
│ │ 03_data-model.mp4#M2^7P5i$H,t7r0o)s+n1~
│ │ 03_data-model.srt
│ │ 04_load-filter-group.mp4
│ │ 04_load-filter-group.srt l&F(G-H,n7L)e0H'Q
│ │ 3|6B-S;R _*t$p$S9i
│ ├─06_lesson-19-pig-analytics
│ │ 01_cogroup-join.mp4(|7m1c5i-@.f0S
│ │ 01_cogroup-join.srt6S+B4[8X-H5_,P
│ │ 02_join-algorithms.mp4
│ │ 02_join-algorithms.srt9^4b7Y4y&K'G2q Y&e
│ │ 03_skew.mp46m2V%[4V-c:H2h
│ │ 03_skew.srt
│ │ 04_other-commands.mp46p(v'Z&f7p&^!B.L
│ │ 04_other-commands.srt
│ │ 05_evaluation-walkthrough.mp4${/c:j,b.P6u'q
│ │ 05_evaluation-walkthrough.srt'_2u/Q%u)q1U
│ │ 06_review.mp4
│ │ 06_review.srt
│ │ #p#~7}9S%p&@
│ └─07_lesson-20-spark2A0m8^!v)t(o
│ 01_context.mp45w3d%B%t3D%z%i4i
│ 01_context.srt
│ 02_spark-examples.mp4!d)w0f!v6`+b
│ 02_spark-examples.srt0k%E$T3[ @/v)g8s6_&}+d
│ 03_rdds-benefits.mp45Q2O8D%r,y9M
│ 03_rdds-benefits.srt
│ 2F%V9F#k y5G2}
└─05_graph-analytics
├─01_lesson-21-structural-tasks;}&q(i#K)M,\*N4i(\8f
│ 01_graph-overview.mp4
│ 01_graph-overview.srt6y3J!h-Q4b)v
│ 02_structural-analysis.mp4
│ 02_structural-analysis.srt
│ 03_degree-histograms-structure-of-the-web.mp4
│ 03_degree-histograms-structure-of-the-web.srt
│ 04_connectivity-and-centrality.mp4
│ 04_connectivity-and-centrality.srt
│ +m0T$Z5@!_)y9y,p6?&^
├─02_lesson-22-trA危ersal-tasks*F,B z/d:|$[6a.q
│ 01_pagerank.mp47C!S9G7o `8`
│ 01_pagerank.srt
│ 02_pagerank-in-more-detail.mp49C3t/a0S/\$N0z+C4y
│ 02_pagerank-in-more-detail.srt
│ 03_trA危ersal-tasks-spanning-trees-and-circuits.mp47S7j8~%j:s$]
│ 03_trA危ersal-tasks-spanning-trees-and-circuits.srt
│ 04_trA危ersal-tasks-maximum-flow.mp4
│ 04_trA危ersal-tasks-maximum-flow.srt
│
├─03_lesson-23-pattern-matching-tasks-and-graph-query
│ 01_pattern-matching.mp4
│ 01_pattern-matching.srt
│ 02_querying-edge-tables.mp4
│ 02_querying-edge-tables.srt
│ 05_graph-query-example-nsa.mp4
│ 05_graph-query-example-nsa.srt
│
├─04_lesson-24-recursive-queries"B*Q2V,E;e4_
│ 01_graph-query-example-recursion.mp4
│ 01_graph-query-example-recursion.srt
|
|