TA的每日心情 | 开心 2024-9-19 21:14 |
---|
签到天数: 757 天 [LV.10]以坛为家III
管理员
- 积分
- 1312455
|
资源详情
课程简介:
本次的课程主要包括三大部分:
1. Flink基本原理概述。指导学员了解并掌握Flink使用过程中设计到的基本概念和简要API,介绍大数据实时流计算相关生态体系,着重梳理清楚Flink上下游体系,掌握Flink的核心技术原理,建立大数据实时流计算的方法论思维。
2. Flink实战生产技术。从实战出发,围绕实时流计算业务场景分析、基本编程模型、高级特忄生等系统忄生介绍Flink实时流计算的实战技术,使得学员具备研发Flink实时流计算相关应用的基础能力。
3. Druid是一款支持数据实时写入、低延时、高忄生能的OLAP引擎,具有优秀的数据聚合能力与实时查询能力。在大数据分析、实时计算、监控等领域都有特定的应用场景,是大数据基础架构建设中重要的一环。本次课程我们将介绍Druid的核心特忄生与原理,以及在忄生能调优以及最佳实践经验。
面向人群:
1. 希望学习大数据实时流计算和实时OLAP的学生;
2. 希望了解大数据实时流计算和OLAP实战技术的IT从业人员;
3. 未来希望成为大数据实时流计算的求职者;
4. 想在大数据实时流计算方向和OLAP方面进行深入研究者。
学习收益:
通过本课程的学习,学员将会收获:
1. 学员将系统忄生的了解并掌握大数据实时流计算的基本技术原理,结合Flink的生产技术案例,可基本实现独立开发、业务场景分析能力;
2. 了解大数据实时流计算上下游生态;
3. 理解Druid基础特忄生与正确使用方式,基本工作原理,并了解Druid面向的问题域以及典型的使用场景;
4. 对有志于从事大数据实时流计算以及OLAP研发的学员,提供系统实现原理的讲解与指导。
【课程内容】
第一课: Flink基本概念与部署
1. Flink简介
2. 编程模型
3. 运行时概念
4. 应用部署与原理
a.部署模式
b.On-Yarn启动设置与原理
c.Job启动设置与原理
第二课:DataStream
1. DataStreamContext环境
2. 数据源(DataSource)
3. 转化(Transformation)
4. 数据Sink
第三课:Window&Time
1. Window介绍
a. 为什么要有Window
b. Window类型
2. WindowAPI的使用
a. Window的三大组件
b. Time&watermark
c. 时间语义
d. 乱序问题解决WaterMark
e. AllowLateness正确设置与理解
f. Sideoutput在Window中的使用
3. Window的内部实现原理
a. Window的处理流程
b. Window中的状态存储
4. 生产环境中的Window使用遇到的一些问题
第四课: Connector
1. 基本Connnector
2. 自定义Source与Sink
a. Kafka简介
b. KafkaConsumer与Sink的正确使用方式
c. Kafka-Connector内部机制与实现原理
第五课: 状态管理与恢复机制
1. 基本概念
2. KeyState基本类型及用法
a. ValueState
b. ListState
c. ReduceState
d. FoldState
e. AggregatingState
3. OperatorState基本用法
4. Checkpoint
a. 概念
b. 开启checkpoint
c. 基本原理
第六课: Metrics与监控
1. Metrics的种类
2. Metrics的获取方式
a. WebUi
b. RestAPI
c. MetricReporter
3. 用户自定义Metric指标方式
4. 监控和诊断:Metric和Druid实时OLAP联合使用
a. Metric上报
b. Metric指标聚合
c. Metric的分类和格式定义
5. Druid查询和指标系统
a. Flink作业反压监控
b. Flink作业的延迟监控
c. 其他
6. Metric系统的内部实现
7. 生产环境中的案例分析--通过指标来排查应用问题
第七课: Flink应用案例介绍
1. 数据清洗:map/flatmap等
2. 监控告警系统
a.数据拉平
b.基础窗口计算等
3. 线上运营系统
4. 风控系统
|
|