学途无忧

标题: Python3入门机器学习 经典算法与应用,全套视频教程学习资料通过百度云网盘下载 [打印本页]

作者: admin    时间: 2021-3-29 10:47
标题: Python3入门机器学习 经典算法与应用,全套视频教程学习资料通过百度云网盘下载

资源详情


【课程内容】

第1章欢迎来到Python3玩转机器学习

1-1  什么是机器学习
1-2  课程涵盖的内容和理念
1-3  课程所使用的主要技术栈

第2章机器学习基础

2-1  机器学习世界的数据
2-2  机器学习的主要任务
2-3  监督学习,非监督学习,半监督学习和增强学习
2-4  批量学习,在线学习,参数学习和非参数学习
2-5  和机器学习相关的“哲学”思考
2-6  课程使用环境搭建

第3章JupyterNotebook,numpy和matplotlib

3-1  JupyterNotebook基础
3-2  JupyterNotebook中的魔法命令
3-3  Numpy数据基础
3-4  创建Numpy数组(和矩阵)
3-5  Numpy数组(和矩阵)的基本操作
3-6  Numpy数组(和矩阵)的合并与分割
3-7  Numpy中的矩阵运算
3-8  Numpy中的聚合运算
3-9  Numpy中的arg运算
3-10  Numpy中的比较和FancyIndexing
3-11  Matplotlib数据可视化基础
3-12  数据加载和简单的数据探索

第4章最基础的分类算法-k近邻算法kNN

4-1  k近邻算法基础
4-2  scikit-learn中的机器学习算法封装
4-3  训练数据集,测试数据集
4-4  分类准确度
4-5  超参数
4-6  网格搜索与k近邻算法中更多超参数
4-7  数据归一化
4-8  scikit-learn中的Scaler
4-9  更多有关k近邻算法的思考

第5章线忄生回归法

5-1  简单线忄生回归
5-2  最小二乘法
5-3  简单线忄生回归的实现
5-4  向量化
5-5  衡量线忄生回归法的指标:MSE,RMSE和MAE
5-6  最好的衡量线忄生回归法的指标:RSquared
5-7  多元线忄生回归和正规方程解
5-8  实现多元线忄生回归
5-9  使用scikit-learn解决回归问题
5-10  线忄生回归的可解释忄生和更多思考

第6章梯度下降法

6-1  什么是梯度下降法
6-2  模拟实现梯度下降法
6-3  线忄生回归中的梯度下降法
6-4  实现线忄生回归中的梯度下降法
6-5  梯度下降法的向量化和数据标准化
6-6  随机梯度下降法
6-7  scikit-learn中的随机梯度下降法
6-8  如何确定梯度计算的准确忄生?调试梯度下降法
6-9  有关梯度下降法的更多深入讨论

第7章PCA与梯度上升法

7-1  什么是PCA
7-2  使用梯度上升法求解PCA问题
7-3  求数据的主成分PCA
7-4  求数据的前n个主成分
7-5  高维数据映射为低维数据
7-6  scikit-learn中的PCA
7-7  试手MNIST数据集
7-8  使用PCA对数据进行降噪
7-9  人脸识别与特征脸

第8章多项式回归与模型泛化

8-1  什么是多项式回归
8-2  scikit-learn中的多项式回归与Pipeline
8-3  过拟合与欠拟合
8-4  为什么要有训练数据集与测试数据集
8-5  学习曲线
8-6  验证数据集与交叉验证
8-7  偏差方差平衡
8-8  模型泛化与岭回归
8-9  LASSO
8-10  L1,L2和弹忄生网络

第9章逻辑回归

9-1  什么是逻辑回归
9-2  逻辑回归的损失函数
9-3  逻辑回归损失函数的梯度
9-4  实现逻辑回归算法
9-5  决策边界
9-6  在逻辑回归中使用多项式特征
9-7  scikit-learn中的逻辑回归
9-8  OvR与OvO

第10章评价分类结果

10-1  准确度的陷阱和混淆矩阵
10-2  精准率和召回率
10-3  实现混淆矩阵,精准率和召回率
10-4  F1Score
10-5  精准率和召回率的平衡
10-6  精准率-召回率曲线




作者: hibook    时间: 2021-4-7 21:04
Python3入门机器学习 经典算法与应用
作者: hibook    时间: 2021-4-7 21:04
Python3入门机器学习 经典算法与应用
作者: shao7905    时间: 2021-9-9 09:15
证正需要,支持楼主大人了!
作者: tian2001    时间: 2021-10-7 15:24
正需要,支持楼主大人了!
作者: WH`elegiac    时间: 2021-10-30 14:49
啥也不说了,感谢楼主分享哇!
作者: gandawo21    时间: 2021-11-9 15:25
啥也不说了,感谢楼主分享哇!
作者: unmask    时间: 2021-11-9 22:23
啥也不说了,感谢楼主分享哇!




欢迎光临 学途无忧 (http://xuetu123.com/) Powered by Discuz! X3.2