2022最新人工智能基础到实战课程
2022最新人工智能基础到实战课程资源描述及截图:
├─1--人工智能基础-快速入门
│├─1--人工智能就业、薪资、各行业应用
││ 1-人工智能就业前景与薪资.mp4
││ 2-人工智能适合人群与必备技能.mp4
││ 3-人工智能时代是发展的必然.mp4
││ 4-人工智能在各领域的应用.mp4
││
│└─2--机器学习和深度学习、有监督和无监督
│ 1-人工智能常见流程.mp4
│ 2-机器学习不同的学习方式.mp4
│ 3-深度学习比传统机器学习有优势.mp4
│ 4-有监督机器学习任务与本质.mp4
│ 5-无监督机器学习任务与本质.mp4
│
├─10--机器学习与大数据-Kaggle竞赛实战
│├─1--药店销量预测案例
││ 1-RoSSMann药店销量预测_kaggle的介绍.mp4
││ 2-对数据字段的介绍_导包.mp4
││ 3-自定义损失函数.mp4
││ 4-对数据里面的目标变量sales的一个分析.mp4
││ 5-数据的预处理.mp4
││ 6-模型的训练_评估.mp4
││ 7-kaggle竞赛网站学习.mp4
││
│└─2--网页分类案例
│ 1-Kaggle网页分类竞赛介绍.mp4
│ 2-评估指标ROC和AUC.mp4
│ 3-评估指标ROC和AUC.mp4
│ 4-竞赛其他相关提交成绩排行榜.mp4
│ 5-数据导入.mp4
│ 6-MLlib对网页分类竞赛数据预处理.mp4
│ 7-MLlib对网页分类竞赛数据预处理_模型训练.mp4
│ 8-MLlib对网页分类竞赛模型训练_模型训练评估_搜索最佳超参数.mp4
│ 9-使用SparkML对网页分类竞赛数据预处理_模型训练_交叉验证调参_01.mp4
│ 10-使用SparkML对网页分类竞赛数据预处理_模型训练_交叉验证调参_02.mp4
│ 11-使用SparkML对网页分类竞赛数据预处理_模型训练_交叉验证调参_03.mp4
│ 12-使用SparkML对网页分类竞赛数据预处理_模型训练_交叉验证调参_04.mp4
│
├─11--机器学习与大数据-海量数据挖掘工具
│├─1--Spark计算框架基础
││ 1-Spark特性_01.mp4
││ 2-Spark特性_02.mp4
││ 3-Spark对比hadoop优势.mp4
││ 4-回顾hadoop讲解shuffle.mp4
││ 5-分布式计算框架Shuffle的原理_01.mp4
││ 6-分布式计算框架Shuffle的原理_02.mp4
││ 7-分布式计算框架Shuffle的原理_03.mp4
││ 8-Spark的RDD特性_01.mp4
││ 9-Spark的RDD特性_02.mp4
││ 10-分布式计算所需进程.mp4
││ 11-两种算子操作本质区别.mp4
││ 12-Spark算子操作实战讲解_代码实战WordCount_01.mp4
││ 13-Spark算子操作实战讲解_代码实战WordCount_02.mp4
││ 14-Spark算子操作实战讲解_代码实战WordCount_03.mp4
││ 15-Spark算子操作实战讲解_代码实战WordCount_04.mp4
││
│├─2--Spark计算框架深入
││ 1-Spark数据缓存机制.mp4
││ 2-Spark宽依赖和窄依赖_01.mp4
││ 3-Spark宽依赖和窄依赖_02.mp4
││ 4-Spark宽依赖和窄依赖_03.mp4
││ 5-Spark术语总结.mp4
││ 6-分布式文件系统Block块的大小配置.mp4
││ 7-Spark程序启动运行流程详解_01.mp4
││ 8-Spark程序启动运行流程详解_02.mp4
││ 9-Spark程序启动运行流程详解_03.mp4
││ 10-讲解构建稀疏和稠密向量_01.mp4
││ 11-讲解构建稀疏和稠密向量_01.mp4
││ 12-构建LabeledPoint.mp4
││ 13-介绍SparkMLlib模块中实现的算法和调用.mp4
││
│└─3--Spark机器学习MLlib和ML模块
│ 1-SparkMLlib对于逻辑回归算法的调用.mp4
│ 2-SparkMLlib调用逻辑回归_自定义阈值_1.mp4
│ 3-SparkMLlib调用逻辑回归_自定义阈值_2.mp4
│ 4-SparkMLlib调用逻辑回归_使用标准归一化_1.mp4
│ 5-SparkMLlib调用逻辑回归_使用标准归一化_2.mp4
│ 6-SparkMLlib调用逻辑回归_使用标准归一化_3.mp4
│ 7-SparkMLlib调用逻辑回归_使用标准归一化_4.mp4
│ 8-SparkMLlib调用KMeans聚类_调用决策树(1)_1.mp4
│ 9-SparkMLlib调用KMeans聚类_调用决策树(1)_2.mp4
│ 10-SparkMLlib调用KMeans聚类_调用决策树(1)_3.mp4
│ 11-使用逻辑回归和随机森林对股票Stock预测案例实战_1.mp4
│ 12-使用逻辑回归和随机森林对股票Stock预测案例实战_2.mp4
│ 13-使用逻辑回归和随机森林对股票Stock预测案例实战_3.mp4
│ 14-从数据转化到训练集的构建.mp4
│ 15-模型的训练以及评估和调超参_1.mp4
│ 16-模型的训练以及评估和调超参_2.mp4
│ 17-模型的训练以及评估和调超参_3.mp4
│ 18-SparkML机器学习库概念讲解_1.mp4
│ 19-SparkML机器学习库概念讲解_2.mp4
│ 20-SparkML机器学习库代码实战讲解_1.mp4
│ 21-SparkML机器学习库代码实战讲解_2.mp4
│ 22-SparkML网页分类案例代码实战续(1)_1.mp4
│ 23-SparkML网页分类案例代码实战续(1)_2.mp4
│ 24-SparkML网页分类案例代码实战续(2)_1.mp4
│ 25-SparkML网页分类案例代码实战续(2)_2.mp4
│ 26-SparkML网页分类案例代码实战续(3).mp4
│
├─12--机器学习与大数据-推荐系统项目实战
│├─1--推荐系统--流程与架构
││ 1-推荐系统_隐式用户反馈_1.mp4
││ 2-推荐系统_隐式用户反馈_2.mp4
││ 3-推荐系统_协同过滤_1.mp4
││ 4-推荐系统_协同过滤_2.mp4
││ 5-推荐系统_协同过滤_3.mp4
││ 6-推荐系统_协同过滤_4.mp4
││ 7-推荐系统架构_实时_离线_1.mp4
││ 8-推荐系统架构_实时_离线_2.mp4
││ 9-推荐系统列表_关联特征权重_基本特征权重的计算_1.mp4
││ 10-推荐系统列表_关联特征权重_基本特征权重的计算_2.mp4
││ 11-推荐系统列表_关联特征权重_基本特征权重的计算_3.mp4
││ 12-推荐系统_数据源_1.mp4
││ 13-推荐系统_数据源_2.mp4
││
│├─2--推荐系统--数据预处理和模型构建评估实战
││ 1-HQL语句_python脚本构建中间结果_1.mp4
││ 2-HQL语句_python脚本构建中间结果_2.mp4
││ 3-HQL语句_python脚本构建中间结果_3.mp4
││ 4-HQL语句_python脚本构建中间结果_4.mp4
││ 5-推荐系统_数据预处理_spark构建特征索引_标签列_1.mp4
││ 6-spark构建特征索引_标签列_2.mp4
││ 7-spark构建特征索引_标签列_3.mp4
││ 8-spark构建特征索引_标签列_4.mp4
││ 9-MLlib调用算法计算模型文件并存储_1.mp4
││ 10-MLlib调用算法计算模型文件并存储_2.mp4
││ 11-MLlib调用算法计算模型文件并存储_3.mp4
││ 12-ACC准确率和AUC面积的计算以及意义.mp4
││
│└─3--推荐系统--模型使用和推荐服务
│ 1-推荐模型文件使用思路.mp4
│ 2-Redis数据库安装及其使用.mp4
│ 3-实时在线推荐列表计算逻辑代码讲解_1.mp4
│ 4-实时在线推荐列表计算逻辑代码讲解_2.mp4
│ 5-实时在线推荐列表计算逻辑代码讲解_3.mp4
│ 6-实时在线推荐列表计算逻辑代码讲解_4.mp4
│ 7-使用dubbo将推荐系统做成服务_1.mp4
│ 8-使用Dubbo将推荐系统做成服务_2.mp4
│ 9-使用Dubbo将推荐系统做成服务_3.mp4
│ 10-Dubbo推荐服务演示_SparkMLlib介绍_1.mp4
│ 11-Dubbo推荐服务演示_SparkMLlib介绍_2.mp4
│ 12-Dubbo推荐服务演示_SparkMLlib介绍_3.mp4
│
├─13--深度学习-原理和进阶
│├─1--神经网络算法
││ 1-神经网络是有监督的算法_生物神经元到人工神经元.mp4
││ 2-三种常见的激活函数_网络拓扑介绍_优化算法.mp4
││ 3-单层神经网络正向传播计算过程_用神经网络理解逻辑回归做多分类.mp4
││ 4-用神经网络理解Softmax回归.mp4
││ 5-隐藏层的意义_隐藏层相当于去做预处理_升维降维.mp4
││ 6-多节点网络输出_sklearn中NN模块的介绍.mp4
││ 7-sklearn中NN模型的代码使用.mp4
││ 8-隐藏层激活函数必须是非线性的.mp4
││ 9-tensorflow概要_conda创建虚拟环境_CPU版本的tensorflow安装.mp4
││ `
│├─2--TensorFlow深度学习工具
││ 1-CUDA下载地址_CUDA显卡白名单地址.mp4
││ 2-CUDA安装_cudnn安装_环境变量配置_检验是否安装成功.mp4
││ 3-Tensorflow代码运行机制_TF基础的代码.mp4
││ 4-TF实现线性回归解析解的方式_TF实现线性回归梯度下降的方式.mp4
││ 5-TF实现线性回归BGD的方式_使用Optimizer_每轮打乱数据.mp4
││ 6-TF实现Softmax回归来识别MNIST手写数字.mp4
││ 7-TF实现DNN来识别MNIST手写数字.mp4
││
│└─3--反向传播推导_Python代码实现神经网络
│ 1-反向传播_链式求导法则.mp4
│ 2-反向传播推导(一).mp4
│ 3-反向传播推导(二)从输出层到最后一个隐藏层.mp4
│ 4-反向传播推导(三)从输出层到最后一个隐藏层Softmax多分类为例.mp4
│ 5-反向传播推导(四)关于Δ和a还有梯度的更新事宜.mp4
│ 6-python实现神经网络训练代码讲解(一).mp4
│ 7-python实现神经网络正向反向传播训练.mp4
│
├─14--深度学习-图像识别原理
│├─1--卷积神经网络原理
││ 1-回顾深度神经网络_卷积层是局部连接.mp4
││ 2-单通道卷积的计算.mp4
││ 3-彩色图片卷积的计算.mp4
││ 4-卷积层权值共享.mp4
││ 5-卷积的补充与Padding填充模式.mp4
││ 6-卷积的计算TF中的API操作与参数.mp4
││ 7-池化的概念和TF中的API的操作与参数.mp4
││ 8-经典的CNN架构和LeNet5.mp4
││
│├─2--卷积神经网络优化
││ 1-AlexNet网络结构_连续使用小的卷积核好处.mp4
││ 2-Dropout技术点思想和运用.mp4
││ 3-数据增强技术点_CNN对MNIST数据集分类_卷积池化代码.mp4
││ 4-CNN对MNIST数据集分类_全连接层以及训练代码.mp4
││ 5-深度学习网络对应ACC准确率忽然下降的思考点.mp4
││ 6-减轻梯度消失问题中激活函数发挥的作用.mp4
││ 7-减轻梯度消失问题中参数初始化发挥的作用.mp4
││ 8-VGG网络结构_以及1乘1的卷积核的作用和好处.mp4
││ 9-Optimizer_SGD_Momentum.mp4
││ 10-Optimizer_Adagrad_Adadelta_RMSprop.mp4
││ 11-Optimizer_Adam.mp4
││
│├─3--经典卷积网络算法
││ 1-Keras介绍_以及不同项目调用不同的python环境和CUDA环境.mp4
││ 2-VGG16_Fine-tuning_对MNIST做手写数字识别.mp4
││ 3-InceptionV1_V2.mp4
││ 4-InceptionV3_以及InceptionV3对皮肤癌图片识别.mp4
││ 5-ResNet残差单元_BottlenetBlocK.mp4
││ 6-DenseNet和Keras里面的实现.mp4
││ 7-DenseNet在Keras里面的代码实现.mp4
││ 8-BatchNormalization.mp4
││ 9-Mobilenet网络架构.mp4
││
│├─4--古典目标检测
││ 1-图像识别任务_古典目标检测.mp4
││ 2-使用OpenCV调用分类器找到目标框.mp4
││ 3-IOU以及python计算的代码.mp4
││ 4-R-CNN和SPP-net.mp4
││ 5-从FastRCNN引入FasterRCNN.mp4
││
│└─5--现代目标检测之FasterRCNN
│ 1-回顾RCNN_SPPnet_Fast-RCNN.mp4
│ 2-FasterRNN的核心RPN_正向传播的框过滤_NMS.mp4
│ 3-NMS代码实现流程_mAP目标检测平均指标.mp4
│ 4-FasterRCNN论文讲解_从介绍到RPN的loss.mp4
│ 5-FasterRCNN论文讲解_从RPN损失到评估指标对比.mp4
│
├─15--深度学习-图像识别项目实战
│├─1--车牌识别
││ 1-基于CascadeClassifier来提取目标框做车牌识别代码详解_01.mp4
││ 2-基于CascadeClassifier来提取目标框做车牌识别代码详解_02.mp4
││ 3-基于CascadeClassifier来提取目标框做车牌识别代码详解_03.mp4
││ 4-基于CascadeClassifier来提取目标框做车牌识别代码详解_04.mp4
││ 5-车牌识别项目关于目标检测的问题.mp4
││
│├─2--自然场景下的目标检测及源码分析
││ 1-FasterRCNN项目代码_环境说明_数据集详解_项目结构说明.mp4
││ 2-FasterRCNN项目代码_数据加载.mp4
││ 3-FasterRCNN项目代码_数据增强.mp4
││ 4-FasterRCNN项目代码_数据初始化.mp4
││ 5-FasterRCNN项目代码_模型的训练.mp4
││ 6-回归整体训练流程_详解读取数据blob_01.mp4
││ 7-回归整体训练流程_详解读取数据blob_02.mp4
││ 8-回归整体训练流程_详解读取数据blob_03.mp4
││ 9-回归整体训练流程_详解读取数据blob_04.mp4
││ 10-FasterRCNN代码_构建head.mp4
││ 11-FasterRCNN代码_构建RPN网络_01.mp4
││ 12-FasterRCNN代码_构建RPN网络_02.mp4
││ 13-FasterRCNN代码_根据RPN网络得到校正后的预测的框_01.mp4
││ 14-FasterRCNN代码_根据RPN网络得到校正后的预测的框_02.mp4
││ 15-FasterRCNN代码_bbox剪裁_NMS非极大值抑制.mp4
││ 16-FasterRCNN代码_给RPN准备正负例样本_01.mp4
││ 17-FasterRCNN代码_给RPN准备正负例样本_02.mp4
││ 18-FasterRCNN代码_给RPN准备正负例样本_03.mp4
││ 19-FasterRCNN代码_给RPN准备正负例样本_04.mp4
││ 20-FasterRCNN代码_给RPN准备正负例样本_05.mp4
││ 21-FasterRCNN代码_给RPN准备正负例样本_06.mp4
││ 22-FasterRCNN代码_给RPN准备正负例样本_07.mp4
││ 23-FasterRCNN代码_给RPN准备正负例样本_08.mp4
││ 24-FasterRCNN代码_给最终RCNN准备正负例样本_ROI池化_01.mp4
││ 25-FasterRCNN代码_给最终RCNN准备正负例样本_ROI池化_02.mp4
││ 26-FasterRCNN代码_添加Loss损失_smoothL1loss.mp4
││
│└─3--图像风格迁移
│ 1-图片风格融合项目_架构_代码实现要点_1.mp4
│ 2-图片风格融合项目_架构_代码实现要点_2.mp4
│ 3-图片风格融合项目_架构_代码实现要点_3.mp4
│ 4-图片风格融合项目_架构_代码实现要点_4.mp4
│
├─16--深度学习-目标检测YOLO(V1-V4全版本)实战
│├─1--YOLOv1详解
││ 1-YOLOv1论文详解_算法特点介绍.mp4
││ 2-YOLOv1论文详解_网络架构_思想.mp4
││ 3-YOLOv1论文详解_训练中的技巧_Loss损失函数.mp4
││ 4-YOLOv1论文详解_NMS_局限性.mp4
││
│├─2--YOLOv2详解
││ 1-YOLOv2论文详解_BN_高分辨率_引入AnchorBoxes.mp4
││ 2-YOLOv2论文详解_mAP更better的一些点.mp4
││ 3-YOLOv2论文详解_Darknet19_分类数据和检测数据集融合_多标签.mp4
││ 4-YOLOv2论文详解_层级分类_层级分类用于目标检测.mp4
││
│├─3--YOLOv3详解
││ 1-YOLOv3论文详解_每个框都要预测多个类别概率.mp4
││ 2-YOLOv3论文详解_引入了FPN的思想特征融合_多路输出_DarkNet53.mp4
││ 3-YOLOv3论文详解_总结_FocalLoss.mp4
││ 4-YOLOv4论文概述_介绍.mp4
││ 5-YOLOv4论文概述_BOS_BOF.mp4
││
│├─4--YOLOv3代码实战
││ 1-YOLOv3代码剖析_项目介绍.mp4
││ 2-YOLOv3代码剖析_聚类anchors_构建backbone主干网络.mp4
││ 3-YOLOv3代码剖析_model输出之后的预测框的计算.mp4
││ 4-YOLOv3代码剖析_使用model预测的其余代码.mp4
││ 5-YOLOv3代码剖析_weights到h5模型的转换.mp4
││ 6-YOLOv3代码剖析_模型的训练部分详解.mp4
││
│└─5--YOLOv4详解
│ 1-YOLOv4_BOF_DropBlock_FocalLoss.mp4
│ 2-YOLOv4_BOF_GIoU_DIoU_CIoU.mp4
│ 3-YOLOv4_BOS_ASPP_SAM_SoftNMS_Mish.mp4
│ 4-YOLOv4_BOS_SAM_PAN_CSP_CmBN.mp4
│
├─17--深度学习-语义分割原理和实战
│├─1--上采样_双线性插值_转置卷积
││ 1-前言.mp4
││ 2-上采样_repeat.mp4
││ 3-线性插值.mp4
││ 4-双线性插值.mp4
││ 5-转置卷积_以及TF的API.mp4
││ 6-双线性插值作为转置卷积核的初始参数.mp4
││ 7-ROI Align.mp4
││ 8-FPN思想与网络结构.mp4
││ 9-FPN应用于FasterRCNN_ResNetFPN.mp4
││
│├─2--医疗图像UNet语义分割
││ 1-语义分割的基本概念.mp4
││ 2-FCN全卷积网络做语义分割.mp4
││ 3-UNet网络结构.mp4
││ 4-UNet网络医疗图像的语义分割.mp4
││
│└─3--蒙版弹幕MaskRCNN语义分割
│ 1-MaskRCNN网络结构.mp4
│ 2-MaskRCNN的项目展示.mp4
│ 3-MaskRCNN网络架构回顾.mp4
│ 4-MaskRCNN根据文档和论文总结重要的知识点.mp4
│ 5-MaskRCNN项目关于运行代码环境的说明.mp4
│ 6-MaskRCNN源码config和model.mp4
│
├─18--深度学习-人脸识别项目实战
│ 1-人脸识别任务种类_具体做法思路.mp4
│ 2-开源的FaceNet项目介绍.mp4
│ 3-人脸识别项目代码整体结构.mp4
│ 4-MTCNN论文_摘要和介绍.mp4
│ 5-MTCNN论文_网络整体架构.mp4
│ 6-PRelu_每阶段输出多分支意义.mp4
│ 7-每一个阶段每个分支的Loss损失_整合每个分支的Loss.mp4
│ 8-训练数据的准备_每一阶段训练的流程.mp4
│ 9-总结MTCNN_缩放因子_注意3阶段网络里面的全连接.mp4
│ 10-人脸识别项目代码_加载MTCNN模型.mp4
│ 11-人脸识别项目代码_读取图片带入MTCNN网络给出人脸候选框.mp4
│ 12-FaceNet论文_摘要和前情介绍.mp4
│ 13-FaceNet论文_相关的介绍.mp4
│ 14-FaceNet论文_TripleLoss思路来源和目标.mp4
│ 15-FaceNet论文_TripleLoss损失函数.mp4
│ 16-FaceNet论文_TripleSelection很至关重要.mp4
│ 17-FaceNet论文_ZF和Inception对比_总结.mp4
│ 18-人脸识别项目代码_FaceNet模型加载和使用.mp4
│ 19-人脸识别项目代码_人脸匹配以及最后的绘图展示.mp4
│
├─19--深度学习-NLP自然语言处理原理和进阶
│├─1--词向量与词嵌入
││ 1-N-gram语言模型.mp4
││ 2-NPLM神经网络语言模型.mp4
││ 3-词向量的作用.mp4
││ 4-CBOW模型思想和计算过程.mp4
││ 5-Skip-gram模型思想和计算过程.mp4
││ 6-Huffman树_分层Softmax的思想.mp4
││ 7-分层Softmax应用到CBOW模型上.mp4
││ 8-负采样和负采样应用到CBOW模型上.mp4
││
│├─2--循环神经网络原理与优化
││ 1-理解RNN循环神经网络拓扑结构.mp4
││ 2-理解RNN循环神经网络计算流程.mp4
││ 3-利用RNN循环神经网络对MNIST手写数字识别.mp4
││ 4-理解LSTM长短时记忆_记住Topo和公式.mp4
││ 5-VanillaRNN的回顾复习.mp4
││ 6-补充讲一下为什么RNN中链越长越容易梯度消失.mp4
││ 7-LSTM的回顾复习_LSTM手写数字识别.mp4
││ 8-双向RNN_LSTM.mp4
││ 9-RNN里面应用的Topology结构.mp4
││
│├─3--从Attention机制到Transformer
││ 1-Seq2Seq中Attention注意力机制.mp4
││ 2-Transformer_Self-Attention_Multi-head.mp4
││ 3-Transformer_Positional_使用逻辑_网络结构总结.mp4
││
│└─4--ELMO_BERT_GPT
│ 1-ELMO.mp4
│ 2-BERT理论.mp4
│ 3-ERNIE_GPT.mp4
│
├─2--人工智能基础-Python基础
│├─1--Python开发环境搭建
││ 1-下载Miniconda运行环境.mp4
││ 2-Miniconda安装和测试.mp4
││ 3-Pycharm安装和代码运行.mp4
││ 4-Jupyter安装和代码运行.mp4
││ 5-Jupyter常用快捷键.mp4
││ 6-Conda虚拟环境创建与Python模块安装.mp4
││ 7-关联虚拟环境运行代码.mp4
││
│└─2--Python基础语法
│ 1-Python是强类型的动态脚本语言.mp4
│ 2-Python_控制语句_单双分支.mp4
│ 3-Python_控制语句_多分支_三元条件运算符.mp4
│ 4-Python_控制语句_while循环.mp4
│ 5-Python_控制语句_for循环.mp4
│ 6-Python_控制语句_嵌套循环.mp4
│ 7-Python_控制语句_break_continue.mp4
│ 8-Python_切片操作.mp4
│ 9-Python_数据类型.mp4
│ 10-Python_集合操作_列表.mp4
│ 11-Python_集合操作_列表的基本操作.mp4
│ 12-Python_集合操作_列表的常用方法.mp4
│ 13-Python_集合操作_元组.mp4
│ 14-Python_集合操作_字典和常见操作.mp4
│ 15-Python_集合操作_字典keys方法_enumerate函数.mp4
│ 16-Python_os模块_shutil模块.mp4
│ 17-Python_打开并读取文件_中文编码问题.mp4
│ 18-Python_函数_定义_调用_返回值_注释.mp4
│ 19-Python_函数_局部变量_全局变量.mp4
│ 20-Python_函数_默认参数_可变参数.mp4
│ 21-Python_函数_递归.mp4
│ 22-Python_函数式编程_高阶函数.mp4
│ 23-Python_函数式编程_map_reduce_filter_匿名函数.mp4
│ 24-Python_函数_闭包.mp4
│ 25-Python_函数_装饰器.mp4
│ 26-Python_类对象_定义与实例化对象.mp4
│ 27-Python_类对象_实例属性和方法_类属性和方法.mp4
│ 28-Python_类对象_内置方法.mp4
│ 29-Python_类对象_运算符重载_私有对象方法_isinstance函数.mp4
│ 30-Python_类对象_面向对象三大特性_类的继承.mp4
│ 31-Python_类对象_子类复用父类构造器和方法_方法重写.mp4
│
├─20--深度学习-NLP自然语言处理项目实战
│├─1--词向量
││ 1-回顾了词向量里面训练的Topology.mp4
││ 2-Word2Vec项目代码_加载数据_构建字典.mp4
││ 3-Word2Vec项目代码_构建一个个批次数据.mp4
││ 4-Word2Vec项目代码_正向传播的Graph构建_NCE损失的计算本质.mp4
││ 5-Word2Vec项目代码_评估比较相似度_最后的训练绘图.mp4
││ 6-Word2Vec项目代码_总结串讲.mp4
││
│├─2--自然语言处理--情感分析
││ 1-Keras实战RNN以及词嵌入来做情感分析.mp4
││ 2-数据预处理_01.mp4
││ 3-数据预处理_02.mp4
││ 4-代码讲解_01.mp4
││ 5-代码讲解_02.mp4
││ 6-代码讲解_03.mp4
││ 7-代码讲解_04.mp4
││ 8-代码讲解_05.mp4
││
│├─3--AI写唐诗
││ 1-AI写唐诗_数据的读取_字典的构建_文本的索引化.mp4
││ 2-AI写唐诗_训练数据的构建.mp4
││ 3-MultiRNNCell单元.mp4
││ 4-AI写唐诗_从词嵌入到构建RNN再到输出层概率输出.mp4
││ 5-AI写唐诗_损失的计算_梯度的求解截断和更新_最终的训练代码.mp4
││ 6-AI写唐诗_模型的使用_增加随机性.mp4
││
│├─4--Seq2Seq聊天机器人
││ 1-从AI写唐诗到Seq2Seq再到Encoder-Decoder.mp4
││ 2-Seq2Seq版Chatbot的数据预处理.mp4
││ 3-Seq2Seq版Chatbot训练和模型使用.mp4
││
│├─5--实战NER命名实体识别项目
││ 1-回顾了一下CRF训练和使用过程.mp4
││ 2-介绍了代码目录结构.mp4
││ 3-NER代码读取数据和预处理.mp4
││ 4-feature进入BiLSTM进行正向传播的过程.mp4
││ 5-通过CRF层来计算Loss损失以及训练.mp4
││ 6-BiLSTM-CRF模型的预测代码.mp4
││ 7-CRF中的特征函数们.mp4
││ 8-对比逻辑回归_相比HMM优势.mp4
││ 9-补充标注偏置问题_HMM做分词代码结构.mp4
││
│├─6--BERT新浪新闻10分类项目
││ 1-BERT新浪新闻10分类项目.mp4
││
│└─7--GPT2聊天机器人
│ 1-GPT2闲聊机器人.mp4
│
├─21--深度学习-OCR文本识别
│ 1-传统OCR识别_深度学习OCR识别.mp4
│ 2-OCR识别本质就是文字检测和文字识别.mp4
│ 3-OCR识别的CTC损失思想.mp4
│ 4-总结理解深度学习文字识别架构.mp4
│ 5-CTC损失函数的理解.mp4
│ 6-CTC损失函数前向后向算法推导_梯度求导公式推导.mp4
│ 7-CTC前向后向算法代码.mp4
│ 8-GreedySearch和BeamSearch解码的方式与代码逻辑.mp4
│ 9-CPTN项目代码剖析.mp4
│ 10-CRNN项目代码剖析.mp4
│
├─24--【加课】Pytorch项目实战
│├─1--PyTorch运行环境安装_运行环境测试
││ 1-PyTorch概述.mp4
││ 2-PyTorch的安装.mp4
││ 3-Pycharm关联PyTorch运行环境.mp4
││ 4-Jupyter关联PyTorch运行环境.mp4
││
│├─2--PyTorch基础_Tensor张量运算
││ 1-Tensor的创建.mp4
││ 2-修改Tensor的形状_索引操作.mp4
││ 3-广播机制_逐元素操作.mp4
││ 4-归并操作_比较操作_矩阵操作.mp4
││
│├─3--PyTorch卷积神经网络_实战CIFAR10
││ 1-PyTorch实战CIFAR10数据_读取和展示.mp4
││ 2-PyTorch实战CIFAR10_构建网络_打印网络层次.mp4
││ 3-PyTorch实战CIFAR10_训练模型_测试模型.mp4
││ 4-PyTorch实战CIFAR10_分类别打印模型准确率.mp4
││ 5-使用全局平均池化_使用LeNet模型.mp4
││ 6-使用集成学习思想训练识别模型.mp4
││ 7-使用VGG16模型提供准确率.mp4
││ 8-torchvision里面的预训练模型.mp4
││ 9-迁移学习_PyTorch代码实战冻结预训练模型参数.mp4
││ 10-PyTorch代码实战加入数据增强.mp4
││
│├─4--PyTorch循环神经网络_词性标注
││ 1-PyTorch词性标注_构建数据和词索引号.mp4
││ 2-PyTorch词性标注_构建词嵌入层LSTM层和词性输出层.mp4
││ 3-PyTorch词性标注_构建数据索引化和训练模型代码.mp4
││ 4-PyTorch词性标注_测试模型效果.mp4
││
│└─5--PyTorch编码器解码器_机器翻译
│ 1-PyTorch中英文翻译_规范化语料库_构建中英文词典索引.mp4
│ 2-PyTorch中英文翻译_数据预处理.mp4
│ 3-PyTorch中英文翻译_索引化数据_转化成Tensor张量_构建Encoder编码器.mp4
│ 4-PyTorch中英文翻译_构建训练函数之Encoder计算.mp4
│ 5-PyTorch中英文翻译_构建带Attention注意力机制的Decoder解码器.mp4
│ 6-PyTorch中英文翻译_构建训练函数之Decoder计算.mp4
│ 7-PyTorch中英文翻译_评估模型函数.mp4
│ 8-PyTorch中英文翻译_绘制Attentions注意力权重.mp4
│
├─25--【加课】百度飞桨PaddlePaddle实战【新增】
│├─1--PaddlePaddle框架安装_波士顿房价预测
││ 1-安装PaddlePaddle.mp4
││ 2-Pycharm运行出现mkl-service或DLL找不到的问题.mp4
││ 3-PaddlePaddle求解线性模型.mp4
││ 4-预测波士顿房价_数据读取_正向传播.mp4
││ 5-预测波士顿房价_反向传播_模型保存_模型测试.mp4
││
│├─2--PaddlePaddle卷积网络_病理性近视识别
││ 1-预测病理性近视_图片数据读取.mp4
││ 2-预测病理性近视_模型训练.mp4
││ 3-预测病理性近视_定义模型结构_评估模型.mp4
││ 4-预测病理性近视_调用经典卷积神经网络.mp4
││
│├─3--PaddleDetection工具_PCB电路板缺陷检测
││ 1-PaddleDetection_项目配置.mp4
││ 2-安装配置VisualStudio_解决安装模块pycocotools或cython_bbox编译报错问题.mp4
││ 3-PCB电路板缺陷检测_Images和Annotations.mp4
││ 4-PCB电路板缺陷检测_前期数据的分析.mp4
││ 5-PCB电路板缺陷检测_项目配置文件.mp4
││ 6-PCB电路板缺陷检测_模型训练.mp4
││ 7-PCB电路板缺陷检测_模型预测.mp4
││
│├─4--PaddleOCR工具_车牌识别(目标检测+CRNN+CTCLoss)
││ 1-PaddleOCR_项目配置_CCPD数据集介绍.mp4
││ 2-车牌识别项目_详解数据准备阶段代码.mp4
││ 3-车牌识别项目_运行保存标签和剪切出的车牌图片.mp4
││ 4-车牌识别项目_车牌目标框检测模型训练.mp4
││ 5-车牌识别项目_车牌字符识别模型训练.mp4
││ 6-车牌识别项目_车牌识别模型导出及预测.mp4
││
│├─5--PaddleNLP模块_物流信息提取(BiGRU+CRF)
││ 1-PaddleNLP_项目配置.mp4
││ 2-PaddleNLP_物流信息提取项目介绍.mp4
││ 3-物流信息提取项目_解决导包显示找不到nul问题.mp4
││ 4-PaddleNLP_物流信息提取项目_加载数据构建DataSet.mp4
││ 5-PaddleNLP_物流信息提取项目_进一步通过DataSet构建出DataLoader.mp4
││ 6-PaddleNLP_物流信息提取项目_构建网络模型.mp4
││ 7-PaddleNLP_物流信息提取项目_模型训练.mp4
││ 8-PaddleNLP_物流信息提取项目_合并结果并展示_使用预训练的词向量提升效果.mp4
││
│└─6--PaddleNLP模块_物流信息提取(ERNIE版)
│ 1-PaddleNLP_物流信息提取项目_ERNIE实战_加载数据集构建Dataset.mp4
│ 2-PaddleNLP_物流信息提取项目_ERNIE实战_详解Tokenizer作用.mp4
│ 3-PaddleNLP_物流信息提取项目_ERNIE实战_讲解模型训练和评估代码.mp4
│ 4-PaddleNLP_物流信息提取项目_ERNIE实战_讲解ChunkEvaluator和输出预测结果.mp4
│
├─26--【加课】Linux 环境编程基础
│└─1--Linux
│ 1-Linux_课程介绍.mp4
│ 2-Linux_Linux简介.mp4
│ 3-Linux_VMWare安装及使用.mp4
│ 4-Linux_安装Linux.mp4
│ 5-Linux_目录介绍.mp4
│ 6-Linux_Linux中的路径.mp4
│ 7-Linux_常用命令_pwd命令.mp4
│ 8-Linux_常用命令_cd命令.mp4
│ 9-Linux_常用命令_ls与ll命令.mp4
│ 10-Linux_常用命令_clear、touch、cat命令.mp4
│ 11-Linux_常用命令more、head、tail命令.mp4
│ 12-Linux_常用命令_mkdir命令.mp4
│ 13-Linux_常用命令_cp命令.mp4
│ 14-Linux_常用命令_rm、mv命令.mp4
│ 15-Linux_常用命令_vi、vim.mp4
│ 16-Linux_常用命令_reboot、halt.mp4
│ 17-Linux_常用配置_设置时区.mp4
│ 18-Linux_常用配置_启动网络.mp4
│ 19-Linux_常用配置_修改网段.mp4
│ 20-Linux_常用配置_设置网络类型.mp4
│ 21-Linux_常用配置_快照与克隆.mp4
│ 22-Linux_Xshell的安装与使用.mp4
│ 23-Linux_上传与下载_Xftp的使用.mp4
│ 24-Linux_上传与下载_lrzsz工具.mp4
│ 25-Linux_文件的压缩与解压缩处理.mp4
│ 26-Linux_安装MySQL.mp4
│
├─27--【加课】算法与数据结构
│└─1--算法与数据结构
│ 1-数据结构与算法简介.mp4
│ 2-大O表示法.mp4
│ 3-线性结构.mp4
│ 4-单线链表1.mp4
│ 5-单链表2.mp4
│ 6-双链表.mp4
│ 7-队列(链式).mp4
│ 8-队列(线式).mp4
│ 9-栈与双端队列.mp4
│ 10-哈希表的基本结构.mp4
│ 11-哈希表冲突问题.mp4
│ 12-哈希表冲突问题2.mp4
│ 13-哈希扩容.mp4
│ 14-递归与栈.mp4
│ 15-线性查找.mp4
│ 16-二分查找.mp4
│ 17-冒泡排序.mp4
│ 18-选择排序.mp4
│ 19-插入排序.mp4
│ 20-归并排序.mp4
│ 21-快速排序.mp4
│ 22-树结构.mp4
│ 23-树结构的遍历.mp4
│ 24-最大堆的增加操作.mp4
│ 25-最大堆的删除操作.mp4
│ 26-二叉树的查找.mp4
│ 27-二叉树获取最小值.mp4
│ 28-二叉树的添加.mp4
│ 29-二叉树的删除.mp4
│
├─3--人工智能基础-Python科学计算和可视化
│├─1--科学计算模型Numpy
││ 1-Numpy_概述_安装_创建数组_获取shape形状.mp4
││ 2-Numpy_array_arange.mp4
││ 3-Numpy_random随机数生成.mp4
││ 4-Numpy_ndarray属性_zeros_ones_like等创建数组函数.mp4
││ 5-NumPy_reshape_切片操作_copy函数.mp4
││ 6-Numpy_改变数组维度_数组的拼接.mp4
││ 7-Numpy_数组的切分和转置.mp4
││ 8-Numpy_算术运算_向上向下取整.mp4
││ 9-Numpy_聚合函数.mp4
││
│├─2--数据可视化模块
││ 1-Matplotlib_概述_绘制直线图.mp4
││ 2-Matplotlib_绘制正余弦曲线_散点图_添加图例.mp4
││ 3-Matplotlib_绘制柱状图_画布切分多个子画布_柱状图对比.mp4
││ 4-Matplotlib_绘制饼图_直方图_同时绘制多组数据分布.mp4
││ 5-Matplotlib_绘制等高线图_绘制三维图像.mp4
││
│└─3--数据处理分析模块Pandas
│ 1-Python_Pandas_Series对象创建.mp4
│ 2-Python_Pandas_DataFrame对象创建.mp4
│ 3-Python_Pandas_获取Series对象的值.mp4
│ 4-Python_Pandas_获取DataFrame对象的值.mp4
│ 5-Python_Pandas_条件过滤.mp4
│ 6-Python_Pandas_空值的删除与填充.mp4
│ 7-Python_Pandas_拼接和合并.mp4
│
├─31--【加课】 强化学习【新增】
│├─1--Q-Learning与SARSA算法
││ 1-强化学习通过智能体与环境交互进行学习.mp4
││ 2-引入马尔科夫链和价值评估的Q值与V值.mp4
││ 3-详解Q值和V值以及它们之间关系.mp4
││ 4-蒙特卡洛采样回溯计算V值.mp4
││ 5-蒙特卡洛和时序差分估算状态V值.mp4
││ 6-SARSA算法和Q-learning算法.mp4
││ 7-理解Q-table_创建maze交互环境.mp4
││ 8-代码实战Q-Learning_Agent和Env整体交互.mp4
││ 9-代码实战Q-Learning智能体选择行为.mp4
││ 10-代码实战Q-Learning智能体训练模型.mp4
││ 11-代码实战Sarsa_Agent和Env整体交互.mp4
││ 12-代码实战Sarsa_Agent选择行为和训练模型.mp4
││ 13-代码实战SarsaLambda_训练模型.mp4
││
│├─2--Deep Q-Learning Network
││ 1-DQN算法思想.mp4
││ 2-DQN算法具体流程.mp4
││ 3-ε-greedy_ReplayBuffer_FixedQ-targets.mp4
││ 4-代码实战DQN_Agent和Env整体交互.mp4
││ 5-代码实战DQN_构建Q网络.mp4
││ 6-代码实战DQN_定义损失函数_构建Target网络更新逻辑.mp4
││ 7-代码实战DQN_训练阶段得到Q网络的预测值和真实值.mp4
││ 8-代码实战DQN_训练阶段最小化损失_记录loss方便展示_随着learn的越多选择action随机性减小.mp4
││ 9-DQN会over-estimate的本质原因.mp4
││ 10-DoubleDQN缓解over-estimate.mp4
││ 11-DoubleDQN代码实战.mp4
││ 12-DuelingDQN.mp4
││ 13-困难样本挖掘_Multi-step_NoiseyNet系统的探索.mp4
││ 14-计算Action的方差避免风险.mp4
││ 15-Rainbow_DQN如何计算连续型的Actions.mp4
││
│├─3--Policy Gradient 策略梯度
││ 1-策略梯度PG_对比基于值和基于策略网络的区别.mp4
││ 2-策略梯度PG_明确目标函数和导函数.mp4
││ 3-策略梯度PG_简化导函数的公式推导.mp4
││ 4-策略梯度PG_总结整体流程_对比交叉熵损失函数求导.mp4
││ 5-策略梯度PG_讲解CartPole环境.mp4
││ 6-代码实战_策略梯度PG和CartPole交互.mp4
││ 7-代码实战_策略梯度PG网络构建.mp4
││ 8-代码实战_策略梯度PG选择行为和参数训练.mp4
││ 9-策略梯度PG_对TotalReward进行均值归一化.mp4
││ 10-策略梯度PG_同一个回合中不同的action回溯不同的TotalReward_代码实战.mp4
││
│├─4--Actor Critic (A3C)
││ 1-ActorCritic原理_把PG和QLearning结合起来.mp4
││ 2-AdvantageActorCritic_共享参数和修改reward技巧.mp4
││ 3-代码实战_ActorCritic与环境交互.mp4
││ 4-代码实战_Actor网络构建及训练.mp4
││ 5-代码实战_详解Critic网络构建及训练.mp4
││ 6-A3C架构和训练流程.mp4
││ 7-Pendulum环境_根据网络预测的μ和σ得到连续型的action值.mp4
││ 8-代码实战_A3C_讲解Coordinator调度多线程运算.mp4
││ 9-代码实战_A3C_定义Worker计算loss的逻辑_针对连续型的action提高actor探索性.mp4
││ 10-代码实战_A3C_增加actor探索性用到熵_定义worker正太分布抽样和求梯度的逻辑.mp4
││ 11-代码实战_A3C_定义AC网络结构_定义worker拉取参数和更新全局网络参数的逻辑.mp4
││ 12-代码实战_A3C_结合流程图分三点总结前面讲的代码.mp4
││ 13-代码实战_A3C_讲解线程中worker和环境交互.mp4
││ 14-代码实战_A3C_讲解线程中worker和GlobalNet交互_代码运行效果展示.mp4
││
│└─5--DDPG、PPO、DPPO算法
│ 1-DDPG解决DQN不能输出连续型动作的问题_DDPG如何训练Actor和Critic.mp4
│ 2-代码实战_DDPG_构建Actor和Critic四个网络_定义Critic求loss和求梯度的逻辑.mp4
│ 3-代码实战_DDPG_Critic网络构建_Actor网络链式求导.mp4
│ 4-代码实战_DDPG_与环境之间的互动_AC训练调整参数_效果展示.mp4
│ 5-TD3_使用DoubleNetwork优化DDPG.mp4
│ 6-PPO_强调AC如何输出连续型动作_区分On-Policy与Off-Policy.mp4
│ 7-PPO_通过重要性采样使得PPO可以做Off-Policy学习.mp4
│ 8-PPO_重要性采样的问题_期望矫正但是方差还是不同带来的问题.mp4
│ 9-PPO_PPO1、TRPO、PPO2三种不同的方式解决两个分布不同的问题.mp4
│ 10-代码实战_PPO与环境整体交互_Actor与Critic网络构建.mp4
│ 11-代码实战_定义PPO1和PPO2不同版本Actor的Loss计算逻辑.mp4
│ 12-代码实战_剖析PPO代码中如何体现Off-Policy的学习方式_效果展示.mp4
│ 13-DPPO分布式PPO.mp4
│ 14-代码实战_DPPO_创建一个PPO和多个Worker_创建多线程.mp4
│ 15-代码实战_DPPO_GlobalPPO和Workers交替执行.mp4
│
├─4--人工智能基础-高等数学知识强化
│├─1--数学内容概述
││ 1-人工智能学习数学的必要性_微积分知识点.mp4
││ 2-线性代数_概率论知识点.mp4
││ 3-最优化知识_数学内容学习重点.mp4
││
│├─2--一元函数微分学
││ 1-导数的定义_左导数和右导数.mp4
││ 2-导数的几何意义和物理意义.mp4
││ 3-常见函数的求导公式.mp4
││ 4-导数求解的四则运算法则.mp4
││ 5-复合函数求导法则.mp4
││ 6-推导激活函数的导函数.mp4
││ 7-高阶导数_导数判断单调性_导数与极值.mp4
││ 8-导数判断凹凸性_导数用于泰勒展开.mp4
││
│├─3--线性代数基础
││ 1-向量的意义_n维欧式空间空间.mp4
││ 2-行向量列向量_转置_数乘_加减乘除.mp4
││ 3-向量的内积_向量运算法则.mp4
││ 4-学习向量计算的用途举例.mp4
││ 5-向量的范数_范数与正则项的关系.mp4
││ 6-特殊的向量.mp4
││ 7-矩阵_方阵_对称阵_单位阵_对角阵.mp4
││ 8-矩阵的运算_加减法_转置.mp4
││ 9-矩阵相乘.mp4
││ 10-矩阵的逆矩阵.mp4
││ 11-矩阵的行列式.mp4
││
│├─4--多元函数微分学
││ 1-多元函数求偏导.mp4
││ 2-高阶偏导数_梯度.mp4
││ 3-雅可比矩阵_在神经网络中应用.mp4
││ 4-Hessian矩阵.mp4
││
│├─5--线性代数高级
││ 1-二次型.mp4
││ 2-补充关于正定负定的理解.mp4
││ 3-特征值和特征向量(1).mp4
││ 4-特征值和特征向量(2).mp4
││ 5-特征值分解.mp4
││ 6-多元函数的泰勒展开_矩阵和向量的求导.mp4
││ 7-奇异值分解定义.mp4
││ 8-求解奇异值分解中的UΣV矩阵.mp4
││ 9-奇异值分解性质_数据压缩.mp4
││ 10-SVD用于PCA降维.mp4
││ 11-SVD用于协同过滤_求逆矩阵.mp4
││
│├─6--概率论
││ 1-概率论_随机事件与随机事件概率.mp4
││ 2-条件概率_贝叶斯公式.mp4
││ 3-随机变量.mp4
││ 4-数学期望和方差.mp4
││ 5-常用随机变量服从的分布.mp4
││ 6-随机向量_独立性_协方差_随机向量的正太分布.mp4
││ 7-最大似然估计思想.mp4
││
│└─7--最优化
│ 1-最优化的基本概念.mp4
│ 2-迭代求解的原因.mp4
│ 3-梯度下降法思路.mp4
│ 4-梯度下降法的推导.mp4
│ 5-牛顿法公式推导以及优缺点.mp4
│ 6-坐标下降法_数值优化面临的问题.mp4
│ 7-凸集.mp4
│ 8-凸函数.mp4
│ 9-凸优化的性质_一般表达形式.mp4
│ 10-拉格朗日函数.mp4
│
├─5--机器学习-线性回归
│├─1--多元线性回归
││ 1-理解简单线性回归.mp4
││ 2-最优解_损失函数_MSE.mp4
││ 3-扩展到多元线性回归.mp4
││ 4-理解多元线性回归表达式几种写法的原因.mp4
││ 5-理解维度这个概念.mp4
││ 6-理解回归一词_中心极限定理_正太分布和做预测.mp4
││ 7-假设误差服从正太分布_最大似然估计MLE.mp4
││ 8-引入正太分布的概率密度函数.mp4
││ 9-明确目标通过最大总似然求解θ.mp4
││ 10-对数似然函数_推导出损失函数MSE.mp4
││ 11-把目标函数按照线性代数的方式去表达.mp4
││ 12-推导出目标函数的导函数形式.mp4
││ 13-θ解析解的公式_是否要考虑损失函数是凸函数.mp4
││ 14-Python开发环境版本的选择及下载.mp4
││ 15-Anaconda环境安装_Pycharm环境安装.mp4
││ 16-Pycharm创建脚本并测试python开发环境.mp4
││ 17-解析解的方式求解多元线性回归_数据Xy.mp4
││ 18-解析解的方式求解多元线性回归_求解模型_使用模型_绘制图形.mp4
││ 19-解析解的方式求解多元线性回归_扩展随机种子概念_增加维度代码的变换.mp4
││ 20-Scikit-learn模块的介绍.mp4
││ 21-调用Scikit-learn中的多元线性回归求解模型(上).mp4
││ 22-调用Scikit-learn中的多元线性回归求解模型(下).mp4
││
│├─2--梯度下降法
││ 1-梯度下降法产生的目的和原因以及思想.mp4
││ 2-梯度下降法公式.mp4
││ 3-学习率设置的学问_全局最优解.mp4
││ 4-梯度下降法迭代流程总结.mp4
││ 5-多元线性回归下的梯度下降法.mp4
││ 6-全量梯度下降.mp4
││ 7-随机梯度下降_小批量梯度下降.mp4
││ 8-对应梯度下降法的问题和挑战.mp4
││ 9-轮次和批次.mp4
││ 10-代码实现全量梯度下降第1步和第2步.mp4
││ 11-代码实现全量梯度下降第3步和第4步.mp4
││ 12-代码实现随机梯度下降.mp4
││ 13-代码实现小批量梯度下降.mp4
││ 14-代码改进保证训练数据全都能被随机取到.mp4
││ 15-代码改进实现随着迭代增加动态调整学习率.mp4
││
│├─3--归一化
││ 1-归一化的目的_维度之间数量级不同产生的矛盾.mp4
││ 2-归一化的目的_举例子来理解做归一化和不做归一化的区别.mp4
││ 3-归一化的副产品_有可能会提高模型的精度.mp4
││ 4-最大值最小值归一化.mp4
││ 5-标准归一化.mp4
││ 6-代码完成标准归一化.mp4
││
│├─4--正则化
││ 1-正则化的目的防止过拟合.mp4
││ 2-正则化通过损失函数加入惩罚项使得W越小越好.mp4
││ 3-常用的L1和L2正则项以及数学意义.mp4
││ 4-L1稀疏性和L2平滑性.mp4
││ 5-通过L1和L2的导函数理解区别的本质原因.mp4
││
│└─5--Lasso回归_Ridge回归_多项式回归
│ 1-代码调用Ridge岭回归.mp4
│ 2-代码调用Lasso回归.mp4
│ 3-代码调用ElasticNet回归.mp4
│ 4-升维的意义_多项式回归.mp4
│ 5-多项式升维代码实战_传入不同超参数对比.mp4
│ 6-多项式升维代码实战_训练模型和评估.mp4
│ 7-实战保险花销预测_数据介绍和加载数据.mp4
│ 8-实战保险花销预测_数据预处理.mp4
│ 9-实战保险花销预测_模型训练和评估_选择非线性算法改进.mp4
│ 10-实战保险花销预测_特征选择思路.mp4
│ 11-实战保险花销预测_特征工程.mp4
│ 12-实战保险花销预测_模型训练和评估.mp4
│
├─6--机器学习-线性分类
│├─1--逻辑回归
││ 1-逻辑回归_Sigmoid函数.mp4
││ 2-sigmoid函数作用.mp4
││ 3-逻辑回归为什么用sigmoid函数_预备知识.mp4
││ 4-证明伯努利分布是指数族分布_推导出逻辑回归公式.mp4
││ 5-回想多元线性回归公式其实也是从广义线性回归推导出来的.mp4
││ 6-推导逻辑回归损失函数_得到总似然的公式.mp4
││ 7-推导逻辑回归损失函数_得到最终形式.mp4
││ 8-绘制逻辑回归损失函数_读入数据计算最优解模型_实现逻辑回归预测_实现逻辑回归损失函数.mp4
││ 9-绘制逻辑回归损失函数_探索单个参数和损失的关系.mp4
││ 10-绘制逻辑回归损失函数_探索两个参数和损失函数变换关系.mp4
││ 11-绘制逻辑回归损失函数_绘制3D的图形_分析X1X2两个维度的重要度.mp4
││ 12-对逻辑回归函数进行求导_结论在后面会用到.mp4
││ 13-对逻辑回归的损失函数求导_推导出导函数的形式.mp4
││ 14-实战逻辑回归对鸢尾花数据集进行二分类.mp4
││ 15-OneVsRest将多分类问题转化成多个二分类问题.mp4
││ 16-实战逻辑回归对鸢尾花数据集进行多分类.mp4
││
│├─2--Softmax回归
││ 1-证明多项式分布属于指数族分布一种.mp4
││ 2-从广义线性回归的η推导出来Softmax的公式.mp4
││ 3-有了Softmax函数的公式就可以去计算loss_Softmax的Loss函数形式其实就是LR的泛化版本.mp4
││ 4-再次证明Softmax损失函数当K=2时就是逻辑回归损失函数.mp4
││ 5-证明Softmax公式K=2的时候就是逻辑回归_平移不变性.mp4
││ 6-逻辑回归和Softmax回归在多分类任务模型参数上的区别_与算法在选择上的区别.mp4
││ 7-实战音乐分类器_讲解需求和读取数据.mp4
││ 8-实战音乐分类器_探索不同曲风音乐文件的时间频率图.mp4
││ 9-实战音乐分类器_傅里叶变换可以帮助我们做什么.mp4
││ 10-实战音乐分类器_代码使用傅里叶变换将混音文件进行投影.mp4
││ 11-实战音乐分类器_代码对单首歌曲进行傅里叶变换_代码对600首音乐文件进行傅里叶变换并保存结果.mp4
││ 12-实战音乐分类器_代码读取600首傅里叶变换后的数据_构建训练集并训练模型.mp4
││ 13-实战音乐分类器_模型的测试和调优_解决双通道音乐文件的问题.mp4
││
│├─3--SVM支持向量机算法
││ 1-SVM与感知机关系_几何距离与函数距离.mp4
││ 2-SVM的思想.mp4
││ 3-几种SVM_SVM的损失函数.mp4
││ 4-数学预备知识_拉格朗日函数.mp4
││ 5-硬间隔SVM的两步优化.mp4
││ 6-总结硬间隔SVM.mp4
││ 7-软间隔SVM和总结流程.mp4
││ 8-非线性SVM.mp4
││ 9-SVM在sklearn中的使用_超参数.mp4
││
│└─4--SMO优化算法
│ 1-SVM算法流程总结.mp4
│ 2-SMO算法求解思路_分解成很多个子二次规划问题分别求解.mp4
│ 3-SMO将交给它的目标函数变成二元函数进一步变成一元函数.mp4
│ 4-对一元函数求极值点_推导出旧的α和新的α的关系.mp4
│ 5-将公式467带入导函数进一步简化_对求解出的新的α2进行剪裁.mp4
│ 6-再次说明α2如何进行剪裁的思路_根据α2求α1.mp4
│ 7-启发式选择两个α.mp4
│ 8-如何计算阈值b.mp4
│ 9-SVM的SMO实现读取数据和计算fx与Ei.mp4
│ 10-SVM的SMO实现判断违背条件的α1.mp4
│ 11-SVM的SMO实现应用公式计算alphas和b.mp4
│ 12-SVM绘制已有数据点和超平面以及边界.mp4
│ 13-关于sklearn中的SVM封装的类和超参.mp4
│ 14-概率化输出_SVM的合页损失函数_Tensorflow实现GD方式求解SVM.mp4
│ 15-OVR和OVO多分类_算法小结_对比逻辑回归.mp4
│
├─7--机器学习-无监督学习
│├─1--聚类系列算法
││ 1-KMeans聚类流程_距离测度欧式距离和余弦距离.mp4
││ 2-距离测度欧式距离和余弦距离的场景_TFIDF.mp4
││ 3-KMeans的一些变形_KMeans的损失函数推导及假设.mp4
││ 4-mini-batchKMeans_Canopy聚类_聚类评估指标.mp4
││ 5-KMeans代码测试不同情况下的聚类效果.mp4
││ 6-层次聚类_密度聚类_谱聚类.mp4
││
│├─2--EM算法和GMM高斯混合模型
││ 1-单个高斯分布GM的参数估计.mp4
││ 2-理解GMM高斯混合分布的对数似然函数.mp4
││ 3-GMM参数估计Πμσ的流程.mp4
││ 4-Jensen不等式的应用.mp4
││ 5-将EM算法应用到GMM中并且推导出了μ和Σ的公式.mp4
││ 6-将EM算法应用到GMM中并且推导出Π的公式.mp4
││ 7-GMM前景背景分离.mp4
││ 8-通过声音文件利用GMM算法识别性别.mp4
││ 9-通过声音文件利用GMM算法识别是谁.mp4
││
│└─3--PCA降维算法
│ 1-特征选择与特征映射.mp4
│ 2-PCA的最大投影方差思路.mp4
│ 3-最大投影方差推导_最小投影距离思路.mp4
│ 4-SVD其实就可以去实现PCA了.mp4
│ 5-PCA的几种应用.mp4
│
├─8--机器学习-决策树系列
│├─1--决策树
││ 1-决策树模型的特点.mp4
││ 2-决策树的数学表达.mp4
││ 3-如何构建一颗决策树.mp4
││ 4-什么是更好的一次划分.mp4
││ 5-Gini系数.mp4
││ 6-信息增益.mp4
││ 7-熵与Gini系数关系_信息增益率.mp4
││ 8-预剪枝以及相关超参数.mp4
││ 9-代码实战决策树对鸢尾花数据集分类.mp4
││ 10-绘制决策树模型_寻找最优树深度.mp4
││ 11-代码训练回归树拟合SineWave.mp4
││ 12-后剪枝的意义.mp4
││ 13-CCP代价复杂度后剪枝.mp4
││ 14-CCP代价复杂度剪枝_α超参数设定.mp4
││
│├─2--集成学习和随机森林
││ 1-不同聚合方式_生成不同弱学习器方式.mp4
││ 2-Bagging_Boosting_Stacking.mp4
││ 3-随机森林.mp4
││ 4-代码实战随机森林对鸢尾花数据集分类.mp4
││ 5-OOB袋外数据.mp4
││ 6-Adaboost算法思路.mp4
││ 7-调整数据权重让权重正确率达到50%.mp4
││ 8-Adaboost如何调整样本权重和求基模型权重.mp4
││
│├─3--GBDT9
││ 1-GBDT试图使用有监督最优化算法梯度下降求解F(x).mp4
││ 2-GBDT令每个弱学习器f(x)去拟合负梯度.mp4
││ 3-GBDT每棵树都是回归树_准备数据才能训练下一颗小树.mp4
││ 4-GBDT应用于回归问题.mp4
││ 5-GBDT回归举例_总结.mp4
││ 6-GBDT应用于二分类问题.mp4
││ 7-GBDT二分类拟合的负梯度依然是残差.mp4
││ 8-GBDT中shrinkage学习率和最优树权重ρ可以共存.mp4
││ 9-GBDT应用于多分类任务.mp4
││ 10-GBDT多分类如何每轮给K颗小树准备要去拟合的负梯度.mp4
││ 11-GBDT多分类流程.mp4
││ 12-对比GBDT回归、二分类、多分类相同点与不同点.mp4
││ 13-GBDT二分类叶子节点分值计算推导.mp4
││ 14-GBDT多分类叶子节点分值计算.mp4
││ 15-GBDT二分类举例详解.mp4
││ 16-GBDT多分类举例详解.mp4
││ 17-计算特征重要度进行特征选择.mp4
││ 18-GBDT用于特征组合降维.mp4
││ 19-特征组合降维在GBDT+LR架构应用.mp4
││ 20-GBDT在sklearn中源码剖析_初始化F(x).mp4
││ 21-GBDT在sklearn中源码剖析_负梯度计算和叶子节点分值计算.mp4
││ 22-GBDT+LR架构训练模型代码实现.mp4
││ 23-GBDT+LR架构预测评估代码实现.mp4
││
│└─4--XGBoost
│ 1-回顾有监督机器学习三要素.mp4
│ 2-Bias_Variance_Trade-off.mp4
│ 3-基于树集成学习4个优点.mp4
│ 4-回顾基于树集成学习的模型和参数并举例说明.mp4
│ 5-通过目标函数Obj来达到准确率和复杂度平衡.mp4
│ 6-Objective_vs_Heuristic.mp4
│ 7-得出XGBoost最开始的Obj目标函数.mp4
│ 8-推导XGBoost对Loss二阶泰勒展开之后的Obj.mp4
│ 9-Obj化简常数项_明确训练每颗回归树需要准备gi和hi.mp4
│ 10-重新定义树ft和树的复杂度Ω.mp4
│ 11-由每个叶子节点重组目标函数Obj.mp4
│ 12-推导XGBoost出Wj计算公式_推导评价树好坏的Obj.mp4
│ 13-根据Obj收益指导每一次分裂从而学习一棵树结构.mp4
│ 14-举例说明从连续型和离散型变量中寻找最佳分裂条件.mp4
│ 15-XGBoost中防止过拟合的前剪枝_后剪枝_学习率.mp4
│ 16-样本权重对于模型学习的影响.mp4
│ 17-总结XGBoost的特性_包括缺失值的处理策略.mp4
│
├─9--机器学习-概率图模型
│├─1--贝叶斯分类
││ 1-朴素贝叶斯分类算法.mp4
││ 2-TF-IDF.mp4
││ 3-NB代码实现解析.mp4
││ 4-sklearn中调用NB_顺便讲解了GridSearchCV.mp4
││ 5-语言模型的设计目的_MLE的作用进行参数估计.mp4
││ 6-贝叶斯网络_马尔可夫链.mp4
││
│├─2--HMM算法
││ 1-HMM隐马的定义.mp4
││ 2-HMM隐马的三组参数_三个基本问题.mp4
││ 3-HMM预测问题使用前向算法.mp4
││ 4-HMM预测问题使用维特比算法.mp4
││ 5-HMM复习_明确概率计算问题要解决的目标.mp4
││ 6-前向算法来解决概率计算问题.mp4
││ 7-Viterbi算法案例详解.mp4
││ 8-Viterbi算法代码实现.mp4
││
│└─3--CRF算法
│ 1-NER与分词和POS的关系_NER的标注策略_NER的主要方法.mp4
│ 2-讲解了一下常见的深度学习LSTM+CRF的网络拓扑.mp4
│ 3-了解CRF层添加的好处.mp4
│ 4-EmissionScore_TransitionScore.mp4
│ 5-CRF的目标函数.mp4
│ 6-计算CRF真实路径的分数.mp4
│ 7-计算CRF所有可能路径的总分数.mp4
│ 8-通过模型来预测新的句子的序列标签.mp4
│
└─课件
**** Hidden Message *****
回的人少,我来小顶一下 啥也不说了,感谢楼主分享哇! 啥也不说了,感谢楼主分享哇! 啥也不说了,感谢楼主分享哇! 正需要,支持楼主大人了! 啥也不说了,感谢楼主分享哇!
页:
[1]